Do not edit this list. It is obsolete. The new list is here.
JASS 2004: Course 3 Reading List
Note: The citations given on this page are a mere starting point for your own literature scanning activities.
The course will be divided in three parts. We start with a discussion of Augmented Reality, Ubiquitous Computing and Context Aware systems and necessary technologies. Afterwards, we will have a look at the underlying mathematics necessary for getting AR systems to work, and finally we will examine the research topic of
Ubiquitous Tracking, i.e. the confluence of Augmented Reality and Ubiquitous Computing.
Part 1: Augmented Reality and UbiComp systems
Augmented Reality: Overview
This presentation should give an overview of state-of-the-art
Augmented Reality systems and technologies. It will explain the general processing pipeline of AR systems and highlight the key subcomponents of every AR system: tracking, 3D scene generation and multimodal user interaction.
- R. Azuma, A Survey of Augmented Reality
- R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, B. MacIntyre, Recent advances in augmented reality
- Paul Milgram, Herman Colquhoun Jr., A Taxonomy of Real and Virtual World Display Integration, In: Y. Ohta and H. Tamura, eds., "Mixed Reality -- Merging Real and Virtual Worlds", March 1999.
- G. Klinker, K. Ahlers, D. Breen, P.-Y. Chevalier, C. Crampton, D. Greer, A. Kramer, E. Rose, M. Tuceryan, R. Whitaker Confluence of Computer Vision and Interactive Graphics for Augmented Reality PRESENCE - Teleoperators and Virtual Environments, Special Issue on Augmented Reality 6(4), 1997.
Current AR systems
This talk will present a selection of AR systems, ranging from the Boeing Wire Assembly demo to current AR software frameworks. It will try to identify reoccurring problems and the evolution of ideas.
- C. Sandor, A. MacWilliams, M. Wagner, M. Bauer, G. Klinker, SHEEP: The Shared Environment Entertainment Pasture
- M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riß, C. Sandor, M. Wagner, Design of a Component-Based Augmented Reality Framework
- S. Feiner, B. MacIntyre, T. Höllerer, and T. Webster. A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban Environment. In Proceedings of ISWC 1997, Boston (MA), 1997.
- D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. Miguel Encarnacao, M. Gervautz, and W. Purgathofer. The Studierstube Augmented Reality Project. Technical
report, TU Wien, 2000.
Ubiquitous Computing: Overview and Systems
Ubiquitous Computing (UbiComp) is a new paradigm that aims at making computer systems invisibly interwoven with the user's environment. This talk will give an overview of the first ideas of UbiComp and applications that have been implemented to date.
- Mark Weiser. The Computer for the 21st Century. Scientific American, 1991.
- Lars Erik Holmquist, Hans-Werner Gellersen, Gerd Kortuem, Albrecht Schmidt, Martin Strohbach, Stavros Antifakos, Florian Michahelles, Bernt Schiele , Michael Beigl and Ramia Maze, Building intelligent environments with Smart-Its. In Computer Graphics and Applications, IEEE, Jan/Feb 2004, page 56 - 64, Volume: 24 , Issue: 1, ISSN: 0272-1716.
- Florian Michahelles, Stavros Antifakos, Jani Boutellier, Albrecht Schmidt and Bernt Schiele, Instructions immersed into the real world. How your Furniture can teach you. Poster Submission, The Fifth International Conference on Ubiquitous Computing (Ubicomp), Seattle, USA, October 2003.
Overview of Tracking Technologies
Tracking is the process of repeatedly determining the position and orientation of objects or people. It is one of the core technologies of Augmented Reality and is at the center of this course's attention. In this talk, an overview of existing tracking technologies should be given, along with an intense discussion of advantages and drawbacks of different technologies.
- Miguel Ribo, State of the Art Report on Optical Tracking, 2001
- K. Meyer, H. L. Applewhite and F. A. Biocca. A Survey of Position Trackers. Presence: Teleoperators and Virtual Environments, Vol. 1, No. 2, pp. 173-200, 1992.
- Rolland, J.P., L. Davis, and Y. Baillot, A Survey of Tracking Technology for Virtual Environments, in Augmented Reality and Wearable Computers, Ch. 3, Ed. Barfield and Caudell, Mahwah, NJ., 2001.
Current Multi-Sensor Fusion Systems
As will have been seen in the last talk, no single tracking technology is sufficient for all needs. The idea of combining multiple sensors to get a result that is better than the sum of the parts will be researched in this presentation. For this purpose, multiple multi sensor systems will be presented, with a discussion of commonalities and differences.
- W. A. Hoff, Fusion of Data from Head-Mounted and Fixed Sensors, Proc. of First International Workshop on Augmented Reality, IEEE, San Francisco, California, November 1, 1998.
- State A, Hirota G, Chen DT, et al., Superior augmented reality registration by integrating landmard tracking and magnetic tracking, Proc. SIGGRAPH '96, New Orleans, LA, 429--438, 1996.
- Auer T, Brantner S, Pinz A. The integration of optical and magnetic tracking for multi-user augmented reality, Computers & Graphics 23 (1999) 805-808
- OpenTracker, TU Wien
- G. Reitmayr, D. Schmalstieg, An Open Software Architecture for Virtual Reality Interaction, In Proc. VRST'01, Banff, Canada, Nov. 15 - 17, 2001.
- G. Reitmayr, D. Schmalstieg. OpenTracker -- an open software architecture for reconfigurable tracking based on XML. In Proc. IEEE Virtual Reality 2001, pages 285--286, Yokohama, Japan, March 13--17 2001.
- Kiyohide Satoh, Mahoro Anabuki, Hiroyuki Yamamoto, and Hideyuki Tamura. A hybrid registration method for outdoor augmented reality. In International Symposium on Augmented Reality (ISAR 2000), Munich, Germany, October 2001.
Context Aware Computing
Context-aware systems, especially those that are mobile, are a fairly new field, but several successful systems have already been built. All of these are heavily under development and are used as research platforms. This presentation should give an overview of context awareness as a term, existing systems and present a few in more detail, showing goals, approach and current status.
- Anind K. Dey. Providing Architectural Support for Building Context-Aware Applications. PhD thesis, Georgia Institute of Technology, November 2000. 1st chapter.
- Mark Weiser. The Computer for the 21st Century. Scientific American, 1991.
- D.Garlan, D.Siewiorek, A.Smailagic, P.Steenkiste: Project Aura: Toward Distraction-Free Pervasive Computing. IEEE Pervasive Computing, Vol.1, No.2, 2002, pp. 22-32
- Tony Jebara, Bernt Schiele, Nuria Oliver, and Alex Pentland. DyPERS: Dynamic Personal Enhanced Reality System. Technical Report 463, MIT Media Laboratory, Cambridge, MA, 1997
Part 2: Mathematical Foundations
The Mathematics of Tracking
This talk will focus on the representation of position and orientation in three-dimensional space and discuss reoccuring problems.
The Mathematics of Calibrating AR Systems
In AR setups, some relationships between objects and properties of cameras, displays etc. have to be determined before the system can be used. The mathematics to do so will be discussed in this talk.
- R. Y. Tsai. A Versatile Camera Calibration Technique for High Accuracy 3D Machine Vision. IBM Technical Report 1985.
- M. Tuceryan, D. Greer, R. Whitaker, D. Breen, C. Crampton, E. Rose, and K. Ahlers, Calibration requirements and procedures for a monitor-based augmented reality system. IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 3, pp. 255–273, 1995.
The Mathematics of Sensor Fusion
This talk will present the mathematics of two often used sensor fusion techniques, namely Kalman filters and particle filters.
Part 3: Ubiquitous Tracking
Foundations of Ubiquitous Tracking
Ubiquitous Tracking aims at combining UbiComp environments with Augmented Reality interaction techniques. For this purpose, a concept for the dynamic integration of multiple sensors has to be provided that allows ad hoc integration of mobile users' tracking setups in intelligent environments. This talk will present some recent research results on that topic.
- J. Newman, M. Wagner, T. Pintaric, A. MacWilliams, M. Bauer, G. Klinker, D. Schmalstieg, Fundamentals of Ubiquitous Tracking for Augmented Reality
- M. Wagner, G. Klinker. An Architecture for Distributed Spatial Configuration of Context Aware Applications
- G. Klinker, T. Reicher, B. Bruegge, Distributed User Tracking Concepts for Augmented Reality Applications
Towards Autocalibrating AR setups
This presentation gives an overview of research results aimed at automatic calibration of AR setups. Calibrating large setups without the user's intervention will be a key requirement to make the vision of Ubiquitous Tracking work.
- A. State, M. Livingston, W. Garrett, G. Hirota, M. Whitton, E. Pisano, and H. Fuchs, Superior augmented reality registration by integrating landmark tracking and magnetic tracking. in Computer Graphics Proceedings, Annual Conference Series: SIGGRAPH ’96 (New Orleans, LA), pp. 429–438, ACM SIGGRAPH, New York, August 1996.
- D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, M. Tuceryan, Automated camera calibration and 3D egomotion estimation for augmented reality applications. Proc. 7th Int. Conf. on Computer Analysis of Images and Patterns (CAIP'97), 1997.
Graph Theoretical Aspects of Sensor Networks
Every Ubiquitous Tracking setup can be represented as a graph of spatial relationships. Getting information about the spatial relation between two objects can then be regarded as a graph search. This search has to be done in a distributed fashion to ensure the scalability of the approach. In this talk, we will look at results from graph theory that might help increasing the efficiency of sensor networks.
--
MartinWagner - 18 Feb 2004