IDP Online Workflow Recovery
Literature
1. K. Cleary, H. Y. Chung, and S. K. Mun. OR 2020: The Operating Room of the
Future. Laparoendoscopic and Advanced Surgical Techniques, 15(5):495–500, 2005.
2. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.
3. A. Kassidas, J. F.
MacGregor?, and P. A. Taylor. Synchronization of batch trajectories
using dynamic time warping.
AIChE? Journal, 44(4):863–875, 1998.
4. H. C. Lin, I. Shafran, T. E. Murphy, A. M. Okamura, D. D. Yuh, and G. D. Hager.
Automatic Detection and Segmentation of Robot-Assisted Surgical Motions. In J. S.
Duncan and G. Gerig, editors, MICCAI, volume 3749 of Lecture Notes in Computer
Science, pages 802–810. Springer, 2005.
5. J. Rosen, M. Solazzo, B. Hannaford, and M. Sinanan. Task decomposition of laparoscopic
surgery for objective evaluation of surgical residents’ learning curve using
hidden Markov model. Computer Aided Surgery, 7(1):49–61, 2002.
6. H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26(1):43–49, 1978.
7. T. Sielhorst, T. Blum, and N. Navab. Synchronizing 3D Movements for Quantitative
Comparison and Simultaneous Visualization of Actions. In Fourth IEEE and ACM
International Symposium on Mixed and Augmented Reality (ISMAR’05), pages 38–
47, 2005.
8. R. A. Wagner and M. J. Fischer. The String-to-String Correction Problem. Journal
of the ACM, 21(1):168–173, 1974.
9. K. Wang and T. Gasser. Alignment of curves by dynamic time warping. Annals of
Statistics, 25(3):1251–1276, 1997.
16