MaPrintedTractography

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

Full color surgical 3D printed tractography

Supervision: Christoph Hennersperger, Prof. Dr. Nassir Navab

Student: Antonio Miguel Luque González

Abstract

In preparation for surgery, many surgeons use visualization tools to plan the surgery and to find the possible challenges that they might face in the operation room. 3D volume rendering is essential to visualize certain structures that are not easily understandable in 2D reconstructions. One example is tractography, the representation of neural tracts, which is used for planning of brain tumor resection. It is possible to display tractography in 2D with color coding but it is more comprehensible in 3D.

Medical 3D printing use is increasing and it is applicable for a variety of use cases. It is used for printing implants but also to visualize complex structures prior to surgery. The currently available results are often monochrome or use a reduced set of colors. However the newest generation of 3D printers supports a large number of colors and materials that enable high quality prints. They also support printing of transparent materials.

The scope of this master thesis it to evaluate how to efficiently map colors and textures in volume rendered medical image views to one or several surface representation files (e.g. VRML) used in 3D printing, and in particular, to get an illustrative 3D printed tractography of the brain. The main focus of the master thesis is to evaluate different methods of transforming a volume rendered surface area (with semitransparent voxels adjacent to opaque voxels and their perceived color) to a surface representation.


ProjectForm
Title: Full color surgical 3D printed tractography
Abstract: In preparation for surgery, many surgeons use visualization tools to plan the surgery and to find the possible challenges that they might face in the operation room. 3D volume rendering is essential to visualize certain structures that are not easily understandable in 2D reconstructions. One example is tractography, the representation of neural tracts, which is used for planning of brain tumor resection. It is possible to display tractography in 2D with color coding but it is more comprehensible in 3D. Medical 3D printing use is increasing and it is applicable for a variety of use cases. It is used for printing implants but also to visualize complex structures prior to surgery. The currently available results are often monochrome or use a reduced set of colors. However the newest generation of 3D printers supports a large number of colors and materials that enable high quality prints. They also support printing of transparent materials. The scope of this master thesis it to evaluate how to efficiently map colors and textures in volume rendered medical image views to one or several surface representation files (e.g. VRML) used in 3D printing, and in particular, to get an illustrative 3D printed tractography of the brain. The main focus of the master thesis is to evaluate different methods of transforming a volume rendered surface area (with semitransparent voxels adjacent to opaque voxels and their perceived color) to a surface representation.
Student: Antonio Miguel Luque González
Director: Prof. Dr. Nassir Navab
Supervisor: Christoph Hennersperger
Type: DA/MA/BA
Area: Surgical Workflow, Medical Augmented Reality
Status: finished
Start: 05/2017
Finish:  
Thesis (optional):  
Picture:  


Edit | Attach | Refresh | Diffs | More | Revision r1.2 - 20 Apr 2018 - 08:05 - ChristophHennersperger