Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Prof. Dr. Nassir Navab

Nassir Navab CAMP - Computer Aided Medical Procedures & Augmented Reality

Research Interests

CAMP Publications

Prof. Gudrun Klinker, Ph.D.

Gudrun Klinker FAR - Fachgebiet Augmented Reality

Research Interests

FAR Publications



Location Technische Universität München
Fakultät für Informatik / I16
Boltzmannstraße 3
85748 Garching bei München

Selected Video

Cardiac C-Arm CT (Video3)
Video Length: 00:00:06
A 3D comparison of ground truth (green) and reconstructed (red) deformable shapes for synthetic data at 50% noise.

fullsize version

Whats hot

19 March 2018,
Medvis / Karl-Heinz-Höhne Award 2018 to Markus Rempfler
The Medvis / Karl-Heinz-Höhne Award 2018 has been awarded to Markus Rempfler. The Medvis Karl-Heinz Höhne Award has been established in 2004 by the 'Gesellschaft für Informatik' (GI) working group on Visual Computing in Medicine and Biology. It is awarded bi-annually to a young scientist for outstanding work on image analysis, visualization and interaction in the field of image-based diagnostics and therapy in biology and medicine.

Hot Stuff

8 February 2018, MI 00.12.019
PhD Defense by Fausto Milletari
Object detection, segmentation and visual tracking are extremely important problems in both computer vision and medical image analysis. Most of the recent scientific efforts focused on proposing machine learning based approaches that can tackle and solve these problems appropriately. Methods that are based on handcrafted features, the so called shallow approaches, have been widely used and explored until very recently and were often employing machine learning algorithms such as boosting, support vector machines, random forests coupled with a careful choice of manually engineered features which were designed in a specific manner for each task. Most recently these approaches have been replaced by deep learning methods which are as well capable of learning features directly from raw data and can capture semantically meaningful information in a hierarchical and structured fashion. Such approaches, which are articularly suited for vision tasks, deliver in some cases superhuman performances when applied to challenging problems. Although machine learning approaches as such delivered outstanding performances on a number of challenging tasks, many methods -- especially in the field of medical image analysis -- cannot still be applied in a straightforward manner. The lack of large amounts of annotated training data, the presence of noise and artifacts, the low inter-class versus the high intra-class variability of the samples, and other domain-specific factors, often limit the performances of the models. In my talk I will show how voting strategies can be used to tackle detection, segmentation and pose estimation problems relying on voting strategies which look only at image parts and assemble the resulting knowledge into a global decision. This approach overcomes the limitation of current machine learning methods in all those cases where, due to the nature of the data and despite appropriate training, the uncertainty of the decision over previously unseen data remains high.


Recent Publications

19 March 2018, Berlin, Germany
Six papers accepted at IPCAI 2018
We got six papers accepted for presentation at IPCAI 2018 in Berlin, Germany.
2 October 2017,
NeuBtracker: publication in Nature Methods
The work on the open-source microscope NeuBtracker by Prof. Dr. Gil Westmeyer and his group was carried out with participation from CAMP. The results have now been published in Nature Methods, see also the TUM press release.
8 August 2017,
One paper accepted at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
5 August 2017, Vancouver, Canada
2 papers accepted at IROS 2017
25 July 2017, Venice, Italy
5 papers accepted at ICCV 2017
We are happy to announce that 5 papers of our chair have been accepted at ICCV

Alumni News

Edit | Attach | Refresh | Diffs | More | Revision r1.5 - 19 Feb 2016 - 15:34 - StefanieDemirci

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif