ProjectKPImageRegistration

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Knowledge Propagation Models for Image Registration

Knowledge Propagation Models for Image Registration

Scientific Director: Nassir Navab

Contact Person(s): Amin Katouzian , Tingying Peng, Sailesh Conjeti,

Keywords: Registration / Visualization, Medical Imaging, Machine Learning for Medical Applications, Microscopic Image Analysis

Abstract

To register modalities with complex intensity relationships, we leverage machine learning algorithm to cast it into a mono modal registration problem. This is done by extracting tissue specific features for propagating anatomical/structural knowledge from one modalitiy to an other through an online learnt propagation model. The registration and propagation steps are iteratively performed and refined. For proof-of-concept, we employ it for registering (1) Immunofluorescence to Histology images and (2) Intravascular Ultrasound to Histology Images.

Team

Contact Person(s)

Amin Katouzian
Dr. Amin Katouzian
Sailesh Conjeti
Sailesh Conjeti
Tingying Peng
Dr. Tingying Peng

Working Group

Amin Katouzian
Dr. Amin Katouzian
Debdoot Sheet
Debdoot Sheet
Mehmet Yigitsoy
Dr. Mehmet Yigitsoy
Nassir Navab
Prof. Dr. Nassir Navab
Sailesh Conjeti
Sailesh Conjeti
Tingying Peng
Dr. Tingying Peng

Location



Technische Universität München
Institut für Informatik / I16
Boltzmannstr. 3
85748 Garching bei München

Tel.: +49 89 289-17058
Fax: +49 89 289-17059
Visit our lab at Garching.



Klinikum rechts der Isar
der Technischen Universitüt München
Ismaninger Str. 22
81675 München

IFL Lab - Room: 01.3a-c
Tel.: +49 89 4140-6457
Fax: +49 89 4140-6458
Visit our lab at Klinikum rechts der Isar.



internal project page

Please contact Amin Katouzian , Tingying Peng, Sailesh Conjeti, for available student projects within this research project.

Edit | Attach | Refresh | Diffs | More | Revision r1.3 - 15 Mar 2015 - 10:58 - SebastianPoelsterl

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif