PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

F. Brunet, A. Bartoli, R. Malgouyres, N. Navab
L-Tangent Norm: A Low Computational Cost Criterion for Choosing Regularization Weights and its Use for Range Surface Reconstruction
Proceedings of 3D Data Processing, Visualization and Transmission, Atlanta, Georgia, June 2008 (bib)

We are interested in fitting a surface model such as a tensor-product spline to range image data. This is commonly done by finding control points which minimize a compound cost including the goodness of fit and a regularizer, balanced by a regularization parameter. Many approaches choose this parameter as the minimizer of, for example, the cross-validation score or the L-curve criterion. Most of these criteria are expensive to compute and difficult to minimize. We propose a novel criterion, the L-tangent norm, which overcomes these drawbacks. It gives sensible results with a much lower computational cost. This new criterion has been successfully tested with synthetic and real range image data.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif