PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

D. Das, E. Coello, R. Schulte, B. Menze
Spatially Adaptive Spectral Denoising for MR Spectroscopic Imaging using Frequency-Phase Non-Local Means
Proceedings of the 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Athens, Greece, October 2016 (bib)

Magnetic resonance spectroscopic imaging (MRSI) is an imaging modality used for generating metabolic maps of the tissue in-vivo. These maps show the concentration of metabolites in the sample being investigated and their accurate quantification is important to diagnose diseases. However, the major roadblocks in accurate metabolite quantification are: low spatial resolution, long scanning times, poor signal-to-noise ratio (SNR) and the subsequent noise-sensitive non-linear model fitting. In this work, we propose a frequency-phase spectral denoising method based on the concept of non-local means (NLM) that improves the robustness of data analysis and scanning times while potentially increasing spatial resolution. We evaluate our method on simulated data sets as well as on human in-vivo MRSI data. Our denoising method improves the SNR while maintaining the spatial resolution of the spectra.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif