Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

A. Eslami, A. Karamalis, A. Katouzian, N. Navab
Segmentation By Retrieval With Guided Random Walks: Application To Left Ventricle Segmentation in MRI
Medical Image Analysis, vol. 17, no. 2, 2013, (bib)

In this paper, a new segmentation framework with prior knowledge is proposed and applied to the left ventricles in cardiac Cine MRI sequences. We introduce a new formulation of the random walks method, coined as guided random walks, in which prior knowledge is integrated seamlessly. In comparison with existing approaches that incorporate statistical shape models, our method does not extract any principal model of the shape or appearance of the left ventricle. Instead, segmentation is accompanied by retrieving the closest subject in the database that guides the segmentation the best. Using this techniques, rare cases can also effectively exploit prior knowledge from few samples in training set. These cases are usually disregarded in statistical shape models as they are outnumbered by frequent cases (effect of class population). In the worst-case scenario, if there is no matching case in the database to guide the segmentation, performance of the proposed method reaches to the conventional random walks, which is shown to be accurate if sufficient number of seeds is provided. There is a fast solution to the proposed guided random walks by using sparse linear matrix operations and the whole framework can be seamlessly implemented in a parallel architecture. The method has been validated on a comprehensive clinical dataset of 3D+t short axis MR images of 104 subjects from 5 categories (normal, dilated left ventricle, ventricular hypertrophy, recent myocardial infarction, and heart failure). The average segmentation errors were found to be 1.54mm for the endocardium and 1.48mm for the epicardium. The method was validated by measuring different algorithmic and physiologic indices and quantified with manual segmentation ground truths, provided by a cardiologist.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif