PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

B. Gutierrez-Becker, D. Mateus, E. Shiban, B. Meyer, J. Lehmberg, N. Navab
A Sparse Approach to Build Shape Models with Routine Clinical Data
International Symposium on Biomedical Imaging 2014 (bib)

Statistical shape models (SSMs) are widely used for introducing shape priors in medical image analysis. However, building a SSM usually requires careful data acquisitions to gather training datasets with both suf?cient quality and enough shape variations. We present a robust framework to build reliable SSMs from a dataset with outliers and incomplete data. Our method is based on Point Distribution Models (PDMs) and makes use of recent advances in sparse optimisation methods to deal with erroneous correspondences. For validation, we apply the proposed approach to a dataset of 43 (including 24 corrupt) CT scans taken during routine clinical practice. We show that our method is able to improve the quality of the skull SSM in terms of generalization ability, specificity, compactness and robustness to missing data in comparison to standard and state-of-the-art algorithms.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif