PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, N. Navab
Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes
Asian Conference on Computer Vision (ACCV), Korea, Daejeon, November 2012 (bib)

We propose a framework for automatic modeling, detection, and tracking of 3D objects with a Kinect. The detection part is mainly based on the recent template-based LINEMOD approach [1] for object detection. We show how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time. The pose estimation and the color information allow us to check the detection hypotheses and improves the correct detec- tion rate by 13% with respect to the original LINEMOD. These many improvements make our framework suitable for object manipulation in Robotics applications. Moreover we propose a new dataset made of 15 registered, 1100+ frame video sequences of 15 various objects for the evaluation of future competing methods.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif