PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

M. Sugiyama, T. Suzuki, Y. Itoh, T. Kanamori, M. Kimura
Least-squares two-sample test
Neural Networks, vol. 24, no. 7, pp. 735-751, 2011 (bib)

The goal of the two-sample test (a.k.a. the homogeneity test) is, given two sets of samples, to judge whether the probability distributions behind the samples are the same or not. In this paper, we propose a novel non-parametric method of two-sample test based on a least-squares density ratio estimator. Through various experiments, we show that the proposed method overall produces smaller type-II error (i.e., the probability of judging the two distributions to be the same when they are actually different) than a state-of-the-art method, with slightly larger type-I error (i.e., the probability of judging the two distributions to be different when they are actually the same).
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif