Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

W. Kehl, T. Holl, F. Tombari, S. Ilic, N. Navab
An Octree-Based Approach towards Efficient Variational Range Data Fusion
British Machine Vision Conference (BMVC), York, UK, September 2016 (bib)

Volume-based reconstruction is usually expensive both in terms of memory consumption and runtime. Especially for sparse geometric structures, volumetric representations produce a huge computational overhead. We present an efficient way to fuse range data via a variational Octree-based minimization approach by taking the actual range data geometry into account. We transform the data into Octree-based truncated signed distance fields and show how the optimization can be conducted on the newly created structures. The main challenge is to uphold speed and a low memory footprint without sacrificing the solutions' accuracy during optimization. We explain how to dynamically adjust the optimizer's geometric structure via joining/splitting of Octree nodes and how to define the operators. We evaluate on various datasets and outline the suitability in terms of performance and geometric accuracy.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif