PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

S. Lieberknecht, S. Benhimane, S. Ilic
Simultaneous Reconstruction and Tracking of non-planar Templates
33rd Annual Symposium of the German Association for Pattern Recognition, Frankfurt am Main, Germany, August 30th - September 2nd 2011 (bib)

In this paper, we address the problem of simultaneous tracking and reconstruction of non-planar templates in real-time. Classical approaches to template tracking assume planarity and do not attempt to recover the shape of an object. Structure from motion approaches use feature points to recover camera pose and reconstruct the scene from those features, but do not produce dense 3D surface models. Finally, deformable surface tracking approaches assume static camera and impose strong deformation priors to recover dense 3D shapes. The proposed method simultaneously recovers the camera motion and deforms the template such that an approximation of the underlying 3D structure is recovered. Spatial smoothing is not explicitly imposed, thus templates of smooth and non-smooth objects can be equally handled. The problem is formalized as an energy minimization based on image intensity differences. Quantitative and qualitative evaluation on both real and synthetic data is presented, we compare the proposed approach to related methods and demonstrate that the recovered camera pose is close to the ground truth even in presence of strong blur and low texture.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif