PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

T. Peng, L. Wang, C. Bayer, S. Conjeti, M. Baust, N. Navab
Shading Correction for Whole Slide Image Using Low Rank and Sparse Decomposition
International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Boston, USA, September 2014 (bib)

Many microscopic imaging modalities suffer from the problem of intensity inhomogeneity due to uneven illumination or camera nonlinearity, known as shading artifacts. A typical example of this is the unwanted seam when stitching images to obtain a whole slide image (WSI). Elimination of shading plays an essential role for subsequent image processing such as segmentation, registration, or tracking. In this paper, we propose two new retrospective shading correction algorithms for WSI targeted to two common forms of WSI: multiple image tiles before mosaicking and an already-stitched image. Both methods leverage on recent achievements in matrix rank minimization and sparse signal recovery. We show how the classic shading problem in microscopy can be reformulated as a decomposition problem of low-rank and sparse components, which seeks an optimal separation of the foreground objects of interest and the background illumination field. Additionally, a sparse constraint is introduced in the Fourier domain to ensure the smoothness of the recovered background. Extensive qualitative and quantitative validation on both synthetic and real microscopy images demonstrates superior performance of the proposed methods in shading removal in comparison with a well-established method in ImageJ?.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif