Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

D. Sheet, A. Karamalis, A. Eslami, P. B. Noël, , , J. Chatterjee, A. K. Ray, A. Laine, S. Carlier, N. Navab, A. Katouzian
Hunting for necrosis in the shadows of intravascular ultrasound
Special Issue, Computerized Medical Imaging and Graphics, 2013, (bib)

Coronary artery disease leads to failure of coronary circulation secondary to accumulation of atherosclerotic plaques. In adjunction to primary imaging of such vascular plaques using coronary angiography or alternatively magnetic resonance imaging, intravascular ultrasound (IVUS) is used predominantly for diagnosis and reporting of their vulnerability. In addition to plaque burden estimation, necrosis detection is an important aspect in reporting of IVUS. Since necrotic regions generally appear as hypoechic, with speckle appearance in these regions resembling true shadows or severe signal dropout regions, it contributes to variability in diagnosis. This dilemma in clinical assessment of necrosis imaged with IVUS is addressed in this work. In our approach, fidelity of the backscattered ultrasonic signal received by the imaging transducer is initially estimated. This is followed by identification of true necrosis using statistical physics of ultrasonic backscattering. A random forest machine learning framework is used for the purpose of learning the parameter space defining ultrasonic backscattering distributions related to necrotic regions and discriminating it from non-necrotic shadows. Evidence of hunting down true necrosis in shadows of intravascular ultrasound is presented with ex vivo experiments along with cross-validation using ground truth obtained from histology. Nevertheless, in some rare cases necrosis is marginally over-estimated, primarily on account of non-reliable statistics estimation. This limitation is due to sparse spatial sampling between neighboring scan-lines at location far from the transducer. We suggest considering the geometrical location of detected necrosis together with estimated signal confidence during clinical decision making in view of such limitation.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif