Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

D. J. Tan , N. Navab, F. Tombari
Looking Beyond the Simple Scenarios: Combining Learners and Optimizers in 3D Temporal Tracking
IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Nantes, France, 2017 (bib)

3D object temporal trackers estimate the 3D rotation and 3D translation of a rigid object by propagating the transformation from one frame to the next. To confront this task, algorithms either learn the transformation between two consecutive frames or optimize an energy function to align the object to the scene. The motivation behind our approach stems from a consideration on the nature of learners and optimizers. Throughout the evaluation of different types of objects and working conditions, we observe their complementary nature – on one hand, learners are more robust when undergoing challenging scenarios, while optimizers are prone to tracking failures due to the entrapment at local minima; on the other, optimizers can converge to a better accuracy and minimize jitter. Therefore, we propose to bridge the gap between learners and optimizers to attain a robust and accurate RGB-D temporal tracker that runs at approximately 2 ms per frame using one CPU core.
Our work is highly suitable for Augmented Reality (AR), Mixed Reality (MR) and Virtual Reality (VR) applications due to its robustness, accuracy, efficiency and low latency. Aiming at stepping beyond the simple scenarios used by current systems, often constrained by having a single object in the absence of clutter, averting to touch the object to prevent close-range partial occlusion or selecting brightly colored objects to easily segment them individually, we demonstrate the capacity to handle challenging cases under clutter, partial occlusion and varying lighting conditions.

Watch our videos:
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif