Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

L. Walchshäusl
Klassifizierung dynamischer Gesten im Kontext multimodaler Infotainmentsysteme
Diploma Thesis, Dezember 15, 2004 (bib)

Particularly in the automotive environment where standard input devices such as the mouse and keyboard are impractical, gesture recognition holds the promise of making man-machine interaction more natural, intuitive and safe [5]. But especially in a dynamic environment like the car, visionbased classification of gestures is a challenging problem. This thesis compares a probabilistic and a rulebased approach to classify 17 different hand gestures in an automotive environment and proposes new methods how to integrate external sensor information into the recognition process. In the first part of the thesis, different techniques in extracting the hand region out of the video stream are presented and compared with regard to robustness and performance. The second part of the thesis compares a HMM-based approach by Morguet [1] and a hierarchical approach by Mammen [2] to recognize gestures and the integration of external context knowledge into the classification process. The final system achieves person independent recognition rates of 86 percent in the desktop and 76 percent in the automotive environment.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.11 - 19 Jul 2016 - 16:26 - NassirNavab

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif