TeachingWs17DLMA

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Hauptseminar/Master Seminar: Deep Learning for Medical Applications

Prof. Nassir Navab, Shadi Albarqouni, Christoph Baur

Type: Advanced Seminar Course Module IN8901
Type: Master Seminar Module IN2107
SWS: 2+0
ECTS: 5 Credits
Location: CAMP Seminar Room, 03.13.010
Time: Mondays, 12-14
Course Language: English

Announcements

  • 10-07-2017: Please register via TUM Matching System within 14.07.2017 - 19.07.2017 .
  • 26-06-2017: An introductory meeting: Monday, 10.07.2017 (15:30-16:00) in CAMP Seminar Room, 03.13.010.
  • 26-06-2017: Website is up!

Introduction

  • Deep Learning is growing tremendously in Computer Vision and Medical Imaging as well. Highly impacted journals in medical imaging community, i.e. IEEE Transaction on Medical Imaging, published recently their special edition on Deep Learning [1]. The Seminar will propose a list of recent scientific articles related to the main current research topics in deep learning for Medical Applications together with some interesting papers from other communities.

Registration

  • Interested students should attend the introductory meeting to enlist in the course.
  • Students can only register through TUM Matching Platform themselves if the maximum number of participants hasn't been reached (please pay attention to the Deadlines).
  • A maximum number of participants: 18.

Requirements

In this Master Seminar (formerly Hauptseminar), each student is asked to send three preferences from the list, then he will be assigned one paper. In order to successfully complete the seminar, participants have to fulfill these requirements:

  • Presentation: The selected paper is presented to the other participants (20 minutes presentation 10 minutes questions). Use the CAMP templates for PowerPoint camp-tum-jhu-slides.zip, or Latex: CAMP-latex-template.zip.
  • Written Report: A document of maximum 2 pages should be submitted before the deadline. A link to the shared repository will be announced later.
  • Attendance: Participants have to participate actively in all seminar sessions.

The students are required to attend each seminar presentation which will be held during this course. Each presentation is followed by a discussion and everyone is encouraged to actively participate. The report must include all references used and must be written completely in your own words. Copy and paste will not be tolerated. Both report and presentation have to be done in English.

Schedule (Tentative)

Date Topic Slides Students
10.07.2017 Preliminary Meeting slides Students who join this meeting and show their interest will have high priority!
16.10.2017 Kick-Off Session Review CNN (), RNN (), Autoencoders ()
06.11.2017 Presentation Session 1    
13.11.2017 Presentation Session 2    
04.12.2017 Presentation Session 3    
11.12.2017 Presentation Session 4    
08.01.2018 Presentation Session 5    
15.01.2018 Presentation Session 6    

List of Topics and Material

The list of papers:

No Application Title Conference/Journal Tutor Student Link


ICML: International Conference on Machine Learning
TMI-SIDL: IEEE Transaction on Medical Imaging, Special Issue on Deep Learning
ISBI: International Symposium on Biomedical Imaging
NIPS: Neural Information Processing Systems
ICRA: International Conference on Robotics and Automation
IJCARS: International Journal on Computer Assisted Radiology and Surgery
JBHI: IEEE Journal of Biomedical and Health Informatics
MICCAI: Medical Image Computing and Computer Assisted Intervention

Literature and Helpful Links

A lot of scientific publications can be found online.

The following list may help you to find some further information on your particular topic:

Some publishers:

Libraries (online and offline):

Some further hints for working with references:

  • JabRef is a Java program for comfortable working with Bibtex literature databases. Handy feature: if you know the PubMed ID for an article, JabRef can import data from there (via "Web Search/Medline").
  • Mendeley is a cross-platform program for organising your references.

If you find useful resources that are not already listed here, please tell us, so we can add them for others. Thanks.


TeachingForm
Title: Deep Learning for Medical Applications
Professor: Prof. Nassir Navab
Tutors: Shadi Albarqouni, Christoph Baur
Type: Hauptseminar
Information: Hauptseminar, SWS: 2, ECTS: 5
Term: 2017WiSe
Abstract:  


Edit | Attach | Refresh | Diffs | More | Revision r1.7 - 10 Jul 2017 - 20:18 - ShadiAlbarqouni

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif