Keywords: Machine Learning for Medical Applications
Abstract
In this project, for the first time, we propose a data-driven search and retrieval (hashing) technique for large neuron image databases. The presented method is established upon hashing forests, where multiple unsupervised random trees are used to encode neurons by parsing the neuromorphological feature space into balanced subspaces. We introduce an inverse coding formulation for retrieval of relevant neurons to effectively mitigate the need for pairwise comparisons across the database. Experimental validations show the superiority of our proposed technique over the state-of-the art methods, in terms of recall for a particular code size. This demonstrates the potential of this approach for effective morphology preserving encoding and retrieval in large neuron databases.
Team
Contact Person(s)
Working Group
Location
Visit our lab at Garching.
internal project page
Please contact
Sailesh Conjeti,
Amin Katouzian , for available student projects within this research project.