Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

B. Thirion, B. Bascle, V. Ramesh, N. Navab
Fusion of Color, Shading and Boundary Information for Factory Pipe Segmentation
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR'00, Hilton Head Island, South Carolina, Vol. 2, 607-616, June 2000 (bib)

Image segmentation has traditionally been thought of us a low/mid-level vision process incorporating no high level constraints. However, in complex and uncontrolled environments, such bottom-up strategies have drawbacks that lead to large misclassification rates. Remedies to this situation include taking into account (1) contextual and application constraints, (2) user input and feedback to incrementally improve the performance of the system. We attempt to incorporate these in the context of pipeline segmentation in industrial images. This problem is of practical importance for the 3D reconstruction of factory environments. However it poses several fundamental challenges mainly due to shading. Highlights and textural variations, etc. Our system performs pipe segmentation by fusing methods from physics-based vision, edge and texture analysis, probabilistic learning and the use of the graph-cut formalism.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif