Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

L. Schwarz, A. Bigdelou, N. Navab
Learning Gestures for Customizable Human-Computer Interaction in the Operating Room
Medical Image Computing and Computer Assisted Intervention (MICCAI), Toronto, Canada, September 2011 (bib)

Interaction with computer-based medical devices in the operating room is often challenging for surgeons due to sterility requirements and the complexity of interventional procedures. Typical solutions, such as delegating the interaction task to an assistant, can be inefficient. We propose a method for gesture-based interaction in the operating room that surgeons can customize to personal requirements and interventional workflow. Given training examples for each desired gesture, our system learns low-dimensional manifold models that enable recognizing gestures and tracking particular poses for fine-grained control. By capturing the surgeon’s movements with a few wireless body-worn inertial sensors, we avoid issues of camera-based systems, such as sensitivity to illumination and occlusions. Using a component-based framework implementation, our method can easily be connected to different medical devices. Our experiments show that the approach is able to robustly recognize learned gestures and to distinguish these from other movements.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif