Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

J. Georgii, F. Echtler, R. Westermann
Interactive Simulation of Deformable Bodies on GPUs
Simulation and Visualisation Conference Proceedings, 2005 (bib)

We present a mass-spring system for interactive simulation of deformable bodies. For the amount of springs we target, numerical time integration of spring displacements needs to be accelerated and the transfer of displaced point positions for rendering must be avoided. To fulfill these requirements, we exploit features of recent graphics accelerators to simulate spring elongation and compression in the graphics processing unit (GPU), saving displaced point masses in graphics memory, and then sending these positions through the GPU again to render the deformed body. This approach allows for interactive simulation and rendering of about one hundred thousand elements and it enables the display of internal properties of the deformed body. To further increase the physical realism of this simulation, we have integrated volume preservation and additional physics based constraints into the GPU mass-spring system.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif