H. Lee, H. Lee, S.T. Kim, Y.M. Ro
Robust Ensemble Model Training via Random Layer Sampling Against Adversarial Attack 31st British Machine Vision Virtual Conference (BMVC) (bib) |
||
Deep neural networks have achieved substantial achievements in several computer vision areas, but have vulnerabilities that are often fooled by adversarial examples that are not recognized by humans. This is an important issue for security or medical applications. In this paper, we propose an ensemble model training framework with random layer sampling to improve the robustness of deep neural networks. In the proposed training framework, we generate various sampled model through the random layer sampling and update the weight of the sampled model. After the ensemble models are trained, it can hide the gradient efficiently and avoid the gradient-based attack by the random layer sampling method. To evaluate our proposed method, comprehensive and comparative experiments have been conducted on three datasets. Experimental results show that the proposed method improves the adversarial robustness. | ||
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. |