Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

R. Bekmukhametov, S. Pölsterl, T. Allmendinger, M. Doan, N. Navab
Automatic Detection of Non-Biological Artifacts in ECGs Acquired During Cardiac Computed Tomography
Machine Learning and Knowledge Discovery in Databases (bib)

Cardiac computed tomography is a non-invasive technique to image the beating heart. One of the main concerns during the procedure is the total radiation dose imposed on the patient. Prospective electrocardiographic (ECG) gating methods may notably reduce the radiation exposure. However, very few investigations address accompanying problems encountered in practice. Several types of unique non-biological factors, such as the dynamic electrical field induced by rotating components in the scanner, influence the ECG and can result in artifacts that can ultimately cause prospective ECG gating algorithms to fail. In this paper, we present an approach to automatically detect non-biological artifacts within ECG signals, acquired in this context. Our solution adapts discord discovery, robust PCA, and signal processing methods for detecting such disturbances. It achieved an average area under the precision-recall curve (AUPRC) and receiver operating characteristics curve (AUROC) of 0.996 and 0.997 in our cross-validation experiments based on 2,581 ECGs. External validation on a separate hold-out dataset of 150 ECGs, annotated by two domain experts (88% inter-expert agreement), yielded average AUPRC and AUROC scores of 0.890 and 0.920. Our solution is deployed to automatically detect non-biological anomalies within a continuously updated database, currently holding over 120,000 ECGs.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif