Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

R. R. Singh, S. Conjeti, R. Banerjee
An approach for real-time stress-trend detection using physiological signals in wearable computing systems for automotive drivers
Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on (bib)

Fast and credible identification and estimation of driver's stress-level and stress-type from sensed physiological signals has been one of the critical research areas in the recent past. Several good metrics and mechanisms involving bioelectric signals like the Galvanic Skin Response (GSR), Electrocardiogram (ECG) and the Photoplethysmography (PPG) have been identified by the scholars over the years. This paper discusses the features extracted from physiological data collected in five different scenarios and their usefulness with the help of statistical trend analysis methods. The algorithm developed comprises of a novel shape-based feature weight allocation approach and a technique for credible online realtime stress-trend detection. Such a stress-trend detection by the mesh of embedded sensory elements residing in the e-fabric of a wearable computing system will help in reducing chances of fatal driving errors by the way of in-time activation of alerts and actuation of corresponding safety / recovery procedures.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif