Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

L. Schwarz, D. Mateus, N. Navab
Discriminative Human Full-Body Pose Estimation from Wearable Inertial Sensor Data
3D Physiological Human (3DPH), 2nd International Workshop, Zermatt, Switzerland, November 2009 (bib)

In this paper, a method is presented that allows reconstructing the full-body pose of a person in real-time, based on the limited input from a few wearable inertial sensors. Our method uses Gaussian Process Regression to learn the person-specific functional relationship between the sensor measurements and full-body pose. We generate training data by recording sample movements for different activities simultaneously using inertial sensors and an optical motion capture system. Since our approach is discriminative, pose prediction from sensor data is efficient and does not require manual initialization or iterative optimization in pose space. We also propose a SVM-based scheme to classify the activities based on inertial sensor data. An evaluation is performed on a dataset of movements, such as walking or golfing, performed by different actors. Our method is capable of reconstructing the full-body pose from as little as four inertial sensors with an average angular error of 4-6 degrees per joint, as shown in our experiments.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif