D. J. Tan , T. Cashman, J. Taylor, A. Fitzgibbon, D. Tarlow, S. Khamis, S. Izadi, J. Shotton
Fits Like a Glove: Rapid and Reliable Hand Shape Personalization IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, June 2016 (bib) |
||
We present a fast, practical method for personalizing a hand shape basis to an individual user's detailed hand shape using only a small set of depth images. To achieve this, we minimize an energy based on a sum of render-and-compare cost functions called the golden energy. However, this energy is only piecewise continuous, due to pixels crossing occlusion boundaries, and is therefore not obviously amenable to efficient gradient-based optimization. A key insight is that the energy is the combination of a smooth low-frequency function with a high-frequency, low-amplitude, piecewise-continuous function. A central finite difference approximation with a suitable step size can therefore jump over the discontinuities to obtain a good approximation to the energy's low-frequency behavior, allowing efficient gradient-based optimization. Experimental results quantitatively demonstrate for the first time that detailed personalized models improve the accuracy of hand tracking and achieve competitive results in both tracking and model registration. | ||
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. |