C. Wachinger, N. Navab
A Contextual Maximum Likelihood Framework for Modeling Image Registration IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island (USA), June 2012. (bib) |
||
We introduce a novel probabilistic framework for image registration. This framework considers, in contrast to previous ones, local neighborhood information. We integrate the neighborhood information into the framework by adding layers of latent random variables, characterizing the descriptive information of each image. This extension has multiple advantages. It allows for a unified description of geometric and iconic registration, with the consequential analysis of similarities. It enables to arrange registration techniques in a continuum, limited by pure intensity- and feature-based registration. With this wide spectrum of techniques combined, we can model hybrid registration approaches. The probabilistic coupling allows further to deduce optimal descriptors and to model the adaptation of description layers during the process, as it is done for joint registration/segmentation. Finally, we deduce a new registration algorithm that allows for a dynamic adaptation of the description layers during the registration. Excellent results confirm the advantages of the new registration method, the major contribution of this article lies, however, in the theoretical analysis. | ||
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. |