Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

C. Wachinger, N. Navab
Manifold Learning for Multi-Modal Image Registration
21st British Machine Vision Conference (BMVC), Aberystwyth, United Kingdom, August 31 - September 3 2010. (bib)

The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual information. The disadvantage of these measures, in contrast to simple L1 or L2 norm, is the increased computational complexity and consequently the prolongation of the registration time. An alternative approach, which has so far not yet gained much attention in the literature, is to find image representations, so called structural representations, that allow for the direct application of L1 and L2 norm. Recently, entropy images were proposed as a simple structural representation of images for multi-modal registration. In this article, we propose the application of manifold learning, more precisely Laplacian eigenmaps, to learn the structural representation. It has the theoretical advantage to present an optimal approximation to one of the criteria for a perfect structural description. Laplacian eigenmaps search for similar patches in high-dimensional patch space and embed the manifold in a low-dimensional space under preservation of locality. This can be interpreted as the identification of internal similarities in images. In our experiments, we show that the internal similarity across images is comparable and notice very good registration results for the new structural represenation.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif