Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

S. Benhimane, A. Ladikos, V. Lepetit, N. Navab
Linear and Quadratic Subsets for Template-Based Tracking
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, June 2007 (bib)

We propose a method that dramatically improves the performance of template-based matching in terms of size of convergence region and computation time. This is done by selecting a subset of the template that verifies the assumption (made during optimization) of linearity or quadraticity with respect to the motion parameters. We call these subsets linear or quadratic subsets. While subset selection approaches have already been proposed, they generally do not attempt to provide linear or quadratic subsets and rely on heuristics such as texturedness. Because a naive search for the optimal subset would result in a combinatorial explosion for large templates, we propose a simple algorithm that does not aim for the optimal subset but provides a very good linear or quadratic subset at low cost, even for large templates. Simulation results and experiments with real sequences show the superiority of the proposed method compared to existing subset selection approaches.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif