Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

T. Blum, H. Feußner, N. Navab
Modeling and Segmentation of Surgical Workflow from Laparoscopic Video
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2010), Beijing, China, September 2010 (bib)

Modeling and analyzing surgeries based on signals that are obtained automatically from the operating room (OR) is a field of recent interest. It can be valuable for analyzing and understanding surgical workflow, for skills evaluation and developing context-aware ORs. In minimally invasive surgery laparoscopic video is easy to record but it is challenging to extract meaningful information from it. We propose a method that uses additional information about tool usage to perform a dimensionality reduction on image features. Using Canonical Correlation Analysis (CCA) a projection of a high-dimensional image feature space to a low dimensional space is obtained such that semantic information is extracted from the video. To model a surgery based on the signals in the reduced feature space two different statistical models are compared. The capability of segmenting a new surgery into phases only based on the video is evaluated. Dynamic Time Warping which strongly depends on the temporal order in combination with CCA shows the best results.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif