ResearchIssueRoboticImag

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Research in Robot-guided Surgery

Table of Content

Contact Person and Group Coordination

Benjamin Frisch
Nassir Navab




Research Projects in Robot-guided Surgery

Intra-operative Human Computer Interaction and Usability Evaluations

Intra-operative Human Computer Interaction and Usability Evaluations

Computerized medical systems play a vital role in the operating room, yet surgeons often face challenges when interacting with these systems during surgery. In this project we are aiming at analyzing and understanding the Operating Room specific aspects which affect the end user experience. Beside operating room specific usability evaluation approaches in this project we also try to improve the preliminary intra-operative user interaction methodologies.
EndoTOFPET-US

EndoTOFPET-US

The project addresses and combines several objectives of the topics Health 2010.1.2-1, such as novel multimodality imaging tools, including a single-photon (quantum) counting PET detector head for the purpose of detecting and quantifying morphologic and functional markers and of developing new biomarkers of tumoural processes at the preclinical and clinical levels. Moreover the endoscopic approach, combined with an unprecedented PET timing resolution will allow more sensitive, more precise, lower radiation dose and less invasive imaging and intervention on small internal structures and lesions towards earlier detection and patient-tailored treatment of asymptomatic cancer types.
Prostate Fusion Biopsy

Prostate Fusion Biopsy

Transrectal ultrasound (TRUS) guided biopsy remains the gold standard for diagnosis. However, it suffers from low sensitivity, leading to an elevated rate of false negative results. On the other hand, the recent advent of PET imaging using a novel dedicated radiotracer, Ga-labelled PSMA (Prostate Specific Membrane Antigen), combined with MR provides improved preinterventional identification of suspicious areas. Thus, MRI/TRUS fusion image-guided biopsy has evolved to be the method of choice to circumvent the limitations of TRUS-only biopsy. We propose a multimodal fusion image-guided biopsy framework that combines PET-MRI images with TRUS. Based on open-source software libraries, it is low cost, simple to use and has minimal overhead in clinical workflow. It is ideal as a research platform for the implementation and rapid bench to bedside translation of new image registration and visualization approaches.
[[][Kooperationsprojekt SFB 824 (3. Förderperiode) & BFS ]]

[[][Kooperationsprojekt SFB 824 (3. Förderperiode) & BFS ]]

Advanced Robotics for Multi-Modal Interventional Imaging (RoBildOR)

Advanced Robotics for Multi-Modal Interventional Imaging (RoBildOR)

This project aims at developing advanced methods for robotic image acquisitions, enabling more flexible, patient- and process-specific functional and anatomical imaging with the operating theater. Using robotic manipulations, co-registered and dynamic imaging can be provided to the surgeon, allowing for optimal implementation of preoperative planning. In particular, this projects is the first one developing concepts for intraoperative SPECT-CT, and introduces intraoperative robotic Ultrasound imaging based on CT trajectory planning, enabling registration with angiographic data. With distinguished partners from Bavarian industry, this project has a fundamental contribution in developing safe, reliable, flexible, and multi-modal imaging technologies for the operating room of the future.
Non Invasive Histology of Atherosclerotic Plaque

Non Invasive Histology of Atherosclerotic Plaque

Stroke is the third leading cause of death in Germany. It is a neurology injury, whereby the oxygen supply to parts of the brain gets cut off. About 80% of these strokes are due to ischemia, i.e. an occlusion of a blood vessel leading to an interrupted blood flow. Stenosis inside the carotid artery imaged using four different MR weightings Special setting in this project is the arteria carotis. Plaque is most likely to develop at the branching of the arteria carotis communis into the arteria carotis interna (leading to the brain) and the arteria carotis externa. This can lead to an abnormal narrowing, called a stenosis. According to the American Heart Association these plaques can be divided into different types, based on their consistency and structure. Until now the decision about a surgery was only based on the degree of the stenosis and not on the type of plaque causing it. This is a faulty approach since there is a plaque type (Type IV) which constitutes a relevant clinical danger, although it does not necessary come along with a stenosis. Unlike most other image modalities MR images do not only give information about the degree of the stenosis, but also about the consistency of the plaque. Using different weighted MR images it is possible to correctly classify plaque into the types defined by the AHA. The main goal of this project is to create a classification tool based on T1, T2, Proton Density and 'Time of flight' weighted images. To achieve this goal the arteria carotis and the plaque have to be segmented from the images. Furthermore various features of the plaque have to be extracted in order to get information needed for the classification.
Navigated Bronchoscopy

Navigated Bronchoscopy

A common task during broncoscopy procedures is to biopsy peripheral lung tumors. The video bronchoscope is not capable to reach the peripheral lung nodes, but only the biopsy needle. Thus there is no video feedback, but only feedback of the current location of the biopsy tool by fluoroscopy imaging during the intervention. This exposes patient and surgical staff to additional radiation. Another drawback is that tumors can not be visualized on the fluoroscope images and they are only a projection, thus do not report the three dimensional position of the biopsy tool. Electromagnetic tracking is capable of tracking the tip of flexible instrument. A field generator with three orthogonal coils introduces current and thus generates a magnetic field. A sensor composed also of three orthogonal coils is capable to estimate its position and orientation with respect to a coordinate system defined by the field generator. Currently we investigate the combination of all available information for navigation and solutions to represent it in one unified user interface. This includes the measurements of the electromagnetic tracking system, the c-arm, techniques of virtual bronchoscopy, and other data. Furthermore, clinical evaluation is conducted. We define the clinical endpoint and show through studies that the procedure will benefit from the usage of the navigation system.
Inside-Out Tracking

Inside-Out Tracking

Current tracking solutions routinely used in a clinical, potentially surgically sterile, environment are limited to mechanical, electromagnetic or classic optical tracking. Main limitations of these technologies are respectively the size of the arm, the influence of ferromagnetic parts on the magnetic field and the line of sight between the cameras and tracking targets. These drawbacks limit the use of tracking in a clinical environment. The aim of this project is the development of so-called inside-out tracking, where one or more small cameras are fixed on clinical tools or robotic arms to provide tracking, both relative to other tools and static targets.
These developments are funded from the 1st of January 2016 to 31st of December 2017 by the ZIM project Inside-Out Tracking for Medical Applications (IOTMA).
Freehand SPECT for Sentinel Lymph Node Localization

Freehand SPECT for Sentinel Lymph Node Localization

Nuclear medicine imaging modalities assist commonly in surgical guidance given their functional nature. However, when used in the operating room they present limitations. Pre-operative tomographic 3D imaging can only serve as a vague guidance intra-operatively, due to movement, deformation and changes in anatomy since the time of imaging, while standard intra-operative nuclear measurements are limited to 1D or (in some cases) 2D images with no depth information. To resolve this problem we propose the synchronized acquisition of position, orientation and readings of gamma probes intra-operatively to reconstruct a 3D activity volume. In contrast to conventional emission tomography, here, in a first proof-of-concept, the reconstruction succeeds without requiring symmetry in the positions and angles of acquisition, which allows greater flexibility and thus opens doors towards 3D intra-operative nuclear imaging.
Intra-operative Beta Probe Surface Imaging and Navigation for Optimal Tumor Resection

Intra-operative Beta Probe Surface Imaging and Navigation for Optimal Tumor Resection

In minimally invasive tumor resection, the goal is to perform a minimal but complete removal of cancerous cells. In the last decades interventional beta probes supported the detection of remaining tumor cells. However, scanning the patient with an intraoperative probe and applying the treatment are not done simultaneously. The main contribution of this work is to extend the one dimensional signal of a nuclear probe to a four dimensional signal including the spatial information of the distal end of the probe. This signal can be then used to guide the surgeon in the resection of residual tissue and thus increase its spatial accuracy while allowing minimal impact on the patient.
Stain Separation and Structure-Preserving Color Normalization for Histological Images

Stain Separation and Structure-Preserving Color Normalization for Histological Images

Staining and scanning of tissue samples for microscopic examination is fraught with unwanted variations that affect their color appearance. Sources of these variations include differences in raw material and manufacturing techniques of stain vendors, staining protocols of labs, and color responses of digital scanners. Color normalization of stained biopsies and tissue microarrays will help pathologists and computational pathology software while comparing different tissue samples. However, techniques that are used for natural images, such as histogram matching fail to utilize unique properties of stained tissue samples and produce undesirable artifacts. Tissue samples are stained with only a few reagents (frequently only two -- hemotoxylin and eosin or H\&E) and most tissue regions bind to only one stain or the other, thus producing sparse density maps composed of only a few components. This underlying structure of sparse stain density is biomedically important. We used these properties of stained tissue to propose a technique for stain separation and color normalization. Based on sparse non-negative matrix factorization (sparseNMF), we estimate prototype color and density map of each stain in an unsupervised manner to perform stain separation. To color normalize a given source image, we combine its stain density maps with the stain color prototypes of a target image whose appearance was preferred by pathologists. In this way, the normalized image preserve the biological structure encoded in the stain density of the source image. Both the proposed sparseNMF stain separation and color-normalization techniques yield higher correlation with ground truth than the state of the art. They are also rated qualitatively higher than other techniques by a group of pathologists. We further propose a computationally faster extension of this technique for large whole-slide images that selects an appropriately small sample of patches to compute the color prototypes of each stain instead of using the entire image. The fast scheme achieves a 20-folds acceleration, which does not only greatly enhance the analysis efficiency, but also allow its clinical applications to become practically feasible.
PicoSEC - Endoscopic PET and Ultrasound Imaging

PicoSEC - Endoscopic PET and Ultrasound Imaging

PICOSEC (Pico-second Silicon photomultiplier-Electronics- & Crystal research) is an European Marie Curie training project. It aims to bring together early career researchers and experienced colleagues from across Europe, to take part in a structured, integrated and multidisciplinary training program for young researchers in an R&D project geared to develop a new class of ultra-fast photon detectors in PET and HEP. This R&D will be the core activity of a TOF-PET development for clinical applications and would open new perspectives in medical imaging and hence in the quality of patient treatment. The Consortium is composed of public and private organizations and based on a common research program, aiming to increase the skills exchange between public and private sectors.
The overall project is divided in to different work packages that focus on specific aims while working towards common project goal. Our work package (WP) 5 has been assigned with the following tasks,
1. Provide tracking solutions for flexible endoscopy, trans-rectal ultrasound probe (TRUS), and endoscopic imaging devices, and evaluate their robustness and accuracy.
2. Based on tracking and imaging data, reconstruct volumes of interest from flexible endoscopic or TRUS detectors.
3. For orientation, guidance to specific regions of interest, and, where appropriate, through specific scanning protocols, provide navigation solutions.
EDEN2020: Enhanced Delivery Ecosystem for Neurosurgery

EDEN2020: Enhanced Delivery Ecosystem for Neurosurgery

EDEN2020 (Enhanced Delivery Ecosystem for Neurosurgery) aims to develop the gold standard for one-stop diagnosis and treatment of brain disease by delivering an integrated technology platform for minimally invasive neurosurgery. A team of first-class industrial partners (Renishaw plc. and XoGraph ltd.), leading clinical oncological neurosurgery team (Università di Milano, San Raffaele and Politecnico di Milano) lead by Prof. Lorenzo Bello and the involvement of leading experts in shape sensing (Universitair Medisch Centrum Groningen) under supervision of Prof. Dr. Sarthak Misra The project is coordinated by Dr. Rodriguez y Baena, Imperial College London. His team provides the core technology for the envisioned system, the bendable robotic needle. During the course of EDEN2020 this interdisciplinary team will work on the integration of 5 key concepts, namely (1) pre-operative MRI and diffusion-MRI imaging, (2) intra-operative ultrasounds, (3) robotic assisted catheter steering, (4) brain diffusion modelling, and (5) a robotics assisted neurosurgical robotic product (the Neuromate), into a pre-commercial prototype which meets the pressing demand for better and less invasive neurosurgery. Our chair will be focusing on the imaging components (i.e. (1) and (2)), targeting the realtime compensation of tissue movement and accurate localization of the flexible catheters at hand. We will further extend the findings of FP7 ACTIVE, in which we successfully combined pre-operative MRI with intra-operative US through deformable 3D-2D registration, making us most qualified for this role.
Intravascular Ultrasound Simulation from Histology

Intravascular Ultrasound Simulation from Histology

We introduce a framework to simulate intravascular ultrasound (IVUS) from histological sections. These sections were previously acquired along with real IVUS radiofrequency signals using single-element 40MHz transducer. After labeling and registering the section to the corresponding IVUS image, a virtual phantom was created, incorporating nuclei scatterer patterns. A finite differences simulation of the acoustic signal was performed, resulting in backscattered radiofrequency signals. These were used to process a B-mode image, which in turn was compared to the real IVUS image of the same section. A high image quality with a very promising correlation to the original IVUS images was achieved.
In-PSMA Radioguided Surgery

In-PSMA Radioguided Surgery

With the advent of 68Ga-HBED-PSMA PET hybrid imaging techniques, even small and atypical localized metastatic lesions of prostate cancer can be visualized. However, these lesions might not be easy to localize intraoperatively. The aim of project is to evaluate intraoperative detection of metastatic lesions using a gamma probe and freehand SPECT after injection of radioactive-labelled PSMA-ligands in correlation with postoperative histological findings.
BioInnovation: From clinical needs to solution concepts

BioInnovation: From clinical needs to solution concepts

Learn how to successfully identify unmet clinical needs within the clinical routine and work towards possible and realistic solutions to solve those needs. Students will get to know tools helping them to be successful innovators in medical technology. This will include all steps from needs finding and selection to defining appropriate solution concepts, including the development of first prototypes. Get introduced to necessary steps for successful idea and concept creation and realize your project in an interdisciplinary teams comprising of physicists, informations scientists and business majors. During the project phase, you are supported by coaches from both industry and medicine, in order to allow for direct and continuous exchange.
Computational Sonography

Computational Sonography

3D ultrasound imaging has high potential for various clinical applications, but often suffers from high operator-dependency and the directionality of the acquired data. State-of-the-art systems mostly perform compounding of the image data prior to further processing and visualization, resulting in 3D volumes of scalar intensities. This work presents computational sonography as a novel concept to represent 3D ultrasound as tensor instead of scalar fields, mapping a full and arbitrary 3D acquisition to the reconstructed data. The proposed representation compactly preserves significantly more information about the anatomy-specific and direction-depend acquisition, facilitating both targeted data processing and improved visualization. We show the potential of this paradigm on ultrasound phantom data as well as on clinically acquired data for acquisitions of the femoral, brachial and antebrachial bone. Further investigation will consider additional compact directional-dependent representations on the one hand and on the other hand modify Computational Sonography from working on B-Mode images to RF-envelope statistics, motivated by the statistical process of image formation. We will show the advantages of the proposed improvements on simulated ultrasound data, phantom and clinically acquired ultrasound data.

Related Publications

2017
R. Kojcev, A. Khakzar, B. Fuerst, O. Zettinig, C. Fakhry, R. DeJong, J. Richmon, R. Taylor, E. Sinibaldi, N. Navab
On the Reproducibility of Expert-Operated and Robotic Ultrasound Acquisitions
International Journal of Computer Assisted Radiology and Surgery / International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), Barcelona, June 2017.
O. Zettinig, J. Rackerseder, B. Lentes, T. Maurer, K. Westenfelder, M. Eiber, B. Frisch, N. Navab
Preconditioned Intensity-Based Prostate Registration using Statistical Deformation Models
IEEE International Symposium on Biomedical Imaging (ISBI), Melbourne, April 2017. (bib)
M. Riva, C. Hennersperger, F. Milletari, A. Katouzian, F. Pessina, B. Gutierrez-Becker, A. Castellano, N. Navab, L. Bello
3D intra-operative ultrasound and MR image-guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation
International Journal of Computer Assisted Radiology and Surgery, in press. (bib)
R. Göbl, S. Virga, J. Rackerseder, B. Frisch, N. Navab, C. Hennersperger
Acoustic window planning for ultrasound acquisition
International Journal of Computer Assisted Radiology and Surgery / 8th International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), Barcelona, Spain, June 2017.
The original publication is available online at link.springer.com
(bib)
O. Zettinig, B. Frisch, S. Virga, M. Esposito, A. Rienmüller, B. Meyer, C. Hennersperger, Y.-M. Ryang , N. Navab
3D Ultrasound Registration-based Visual Servoing for Neurosurgical Navigation
International Journal of Computer Assisted Radiology and Surgery, in press, 2017.
The original publication is available online at link.springer.com
(bib)
2016
B. Frisch, O. Zettinig, B. Fuerst, S. Virga, C. Hennersperger, N. Navab
Collaborative Robotic Ultrasound: Towards Clinical Application
Radiological Society of North America Annual Meeting, Chicago, USA, 2016 (bib)
B. Busam, M. Esposito, B. Frisch, N. Navab
Quaternionic Upsampling: Hyperspherical Techniques for 6 D-o-F Pose Tracking
International Conference on 3DVision (3DV), Stanford University, California, USA, October 2016 (bib)
C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff, N. Navab
Towards MRI-Based Autonomous Robotic US Acquisitions: A First Feasibility Study
IEEE Transactions on Medical Imaging, vol. 36, iss. 2, 2017
The original publication (open access) is available online at ieeexplore.ieee.org
(bib)
J. Gardiazabal, P. Matthies, J. Vogel, B. Frisch, N. Navab, S. I. Ziegler, T. Lasser
Flexible Mini Gamma Camera Reconstructions of Extended Sources using Step and Shoot and List Mode
Medical Physics 43(12):6418-6428, 2016. (bib)
M. Esposito, B. Busam, C. Hennersperger, J. Rackerseder, N. Navab, B. Frisch
Multimodal US-Gamma Imaging using Collaborative Robotics for Cancer Staging Biopsies
International Journal of Computer Assisted Radiology and Surgery (bib)
R. Kojcev, B. Fuerst, O. Zettinig, J. Fotouhi, S.C. Lee, B. Frisch, R. Taylor, E. Sinibaldi, N. Navab
Dual-Robot Ultrasound-Guided Needle Placement: Closing the Planning-Imaging-Action Loop
International Journal of Computer Assisted Radiology and Surgery / International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), Heidelberg, June 2016.
The original publication is available online at link.springer.com
(bib)
O. Zettinig, B. Fuerst, R. Kojcev, M. Esposito, M. Salehi, W. Wein, J. Rackerseder, B. Frisch, N. Navab
Toward Real-time 3D Ultrasound Registration-based Visual Servoing for Interventional Navigation
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, May 2016.
The original publication is available online at ieeexplore.ieee.org
(bib)
C. Bluemel, P. Matthies, K. Herrmann, S. P. Povoski
3D Scintigraphic Imaging and Navigation in Radioguided Surgery: Freehand SPECT Technology and its Clinical Applications
Expert Review of Medical Devices, 2016 (bib)
2015
B. Busam, M. Esposito, S. Che'Rose, N. Navab, B. Frisch
A Stereo Vision Approach for Cooperative Robotic Movement Therapy
International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, December 2015 (bib)
P. Matthies, B. Frisch, J. Vogel, T. Lasser, M. Friebe, N. Navab
Inside-Out Tracking for Flexible Hand-held Nuclear Tomographic Imaging
IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, USA, November 2015 (bib)
J. Gardiazabal, B. Frisch, P. Matthies, J. Vogel, S. I. Ziegler, N. Navab, T. Lasser
List-Mode Reconstruction for Continuous Freehand SPECT Acquisitions
IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, USA, November 2015 (bib)
B. Frisch, et al.
First Results with an Interventional Handheld PET
IEEE Nuclear Science Symposium and Medical Imaging Conference, San Diego, USA, November 2015 (bib)
M. Esposito, B. Busam, C. Hennersperger, J. Rackerseder, A. Lu, N. Navab, B. Frisch
Cooperative Robotic Gamma Imaging: Enhancing US-guided Needle Biopsy
Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Munich, Germany, October 2015 (bib)
O. Zettinig, A. Shah, C. Hennersperger, M. Eiber, C. Kroll, H. Kübler, T. Maurer, F. Milletari, J. Rackerseder, C. Schulte zu Berge, E. Storz, B. Frisch, N. Navab
Multimodal Image-Guided Prostate Fusion Biopsy based on Automatic Deformable Registration
International Journal of Computer Assisted Radiology and Surgery / 6th International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), Barcelona, June 2015.
The original publication is available online at link.springer.com
(bib)
A. Shah, O. Zettinig, E. Storz, T. Maurer, M. Eiber, N. Navab, B. Frisch
Challenges in Multimodal Image-guided Targeted Prostate Biopsy
Hamlyn Symposium on Medical Robotics, London, UK, June 2015 (bib)
B. Frisch, T. Maurer, A. Okur, T. Weineisen, , H. Kübler, N. Navab, HP Wester, M. Schwaiger, M. Eiber
Freehand SPECT for 111In-PSMA-I&T radioguided lymphadenectomy in prostate cancer patients
Society of Nucler Medicine and Medical Imaging Annual Meeting, Baltimore, USA, 2015 (bib)
B. Frisch, E. Storz, O. Zettinig, A. Shah, H. Kübler, N. Navab, HP Wester, M. Schwaiger, M. Eiber, T. Maurer
PET/MRI/TRUS image fusion guided prostate biopsy: development of a research platform and initial clinical results
Society of Nucler Medicine and Medical Imaging Annual Meeting, Baltimore, USA, 2015 (bib)
J. Gardiazabal, J. Vogel, P. Matthies, M. Wieczorek, B. Frisch, N. Navab, S. I. Ziegler, T. Lasser
Fully 3D thyroid imaging with mini gamma cameras
Proceedings of Fully3D, Newport, USA, June 2015 (bib)
T. Maurer, T. Weineisen, HP Wester, , A. Okur, G. Weirich, H. Kübler, M. Schwaiger, J. Gschwend, B. Frisch, M. Eiber
PSMA-radioguided surgery: Introducing molecular surgery in patients with recurrent prostate cancer
2015 Annual Meeting of the American Urological Association, New Orleans, USA, 2015 (bib)
E. Storz, A. Shah, O. Zettinig, M. Eiber, H.-J. Wester, H. Kübler, J. Gschwend, M. Schwaiger, B. Frisch, T. Maurer
PSMA-PET/MRI-guided fusion biopsy for the detection of prostate cancer
Annual Congress of European Association of Urology (EAU), Madrid, March 2015 (bib)
T. Maurer, T. Weineisen, HP Wester, , A. Okur, G. Weirich, H. Kübler, M. Schwaiger, J. Gschwend, B. Frisch, M. Eiber
Introduction of PSMA-radioguided surgery in patients with recurrent prostate cancer: taking salvage lymphadenectomy to the next level?
Annual Congress of European Association of Urology (EAU), Madrid, March 2015 (bib)
T. Lasser, J. Gardiazabal, M. Wieczorek, P. Matthies, J. Vogel, B. Frisch, N. Navab
Towards 3D thyroid imaging using robotic mini gamma cameras
Bildverarbeitung für die Medizin, Lübeck, Germany, March 2015 (bib)
A. Hartl, D. I. Shakir, T. Lasser, S. I. Ziegler, N. Navab
Detection models for freehand SPECT reconstruction
Physics in Medicine and Biology 60(3):1031-1046, 2015 (bib)
2014
O. Zettinig, C. Hennersperger, C. Schulte zu Berge, M. Baust, N. Navab
3D Velocity Field and Flow Profile Reconstruction from Arbitrarily Sampled Doppler Ultrasound Data
Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Boston, USA, September 2014.
The original publication is available online at link.springer.com
(bib)
A. Okur, C. Hennersperger, J.B. Runyan, J. Gardiazabal, M. Keicher, S. Paepke, T. Wendler, N. Navab
fhSPECT-US Guided Needle Biopsy of Sentinel Lymph Nodes in the Axilla: Is it Feasible?
Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014, Lecture Notes in Computer Science Volume 8673, 2014, pp 577-584 (bib)
J. Gardiazabal, M. Esposito, P. Matthies, A. Okur, J. Vogel, S. Kraft, B. Frisch, T. Lasser, N. Navab
Towards personalized interventional SPECT-CT imaging
Proceedings of the 17th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Boston, USA, September 2014 (bib)
A. Shah, O. Zettinig, T. Maurer, C. Precup, C. Schulte zu Berge, J. Weiss, B. Frisch, N. Navab
An Open Source Multimodal Image-guided Prostate Biopsy Framework
3rd Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging (CLIP), 17th MICCAI, MIT, Boston, USA, September 2014.
The original publication is available online at link.springer.com
(bib)
I. Einspieler, A.R. Novotny, A. Okur, M. Essler, M. E. Martignoni
First Experience With Image-guided Resection of Paraganglioma
Clinical Nuclear Medicine, Volume 39, Issue:8, August 2014. (bib)
A. Okur, R. Voigt, R. Stauder, N. Navab
Investigation of performance log files of freehand SPECT acquisitions for usage characteristics and surgical phase determination
The 7th Hamlyn Symposium on Medical Robotics, London, UK, July 2014 (bib)
P. Matthies, J. Gardiazabal, A. Okur, T. Lasser, N. Navab
Accuracy evaluation of interventional nuclear tomographic reconstruction using mini gamma cameras
The 7th Hamlyn Symposium on Medical Robotics, London, UK, July 2014 (bib)
P. Matthies, J. Gardiazabal, A. Okur, J. Vogel, T. Lasser, N. Navab
Mini Gamma Cameras for Intra-operative Nuclear Tomographic Reconstruction
Medical Image Analysis 18(8):1329-1336, 2014 (bib)
A.L. Mihaljevic, A. Rieger, B. Belloni, R. Hein, A. Okur, K. Scheidhauer, T. Schuster, H. Friess, M. E. Martignoni
Transferring innovative freehand SPECT to the operating room: First experiences with sentinel lymph node biopsy in malignant melanoma
European Journal of Surgical Oncology (EJSO), Volume 40, Issue 1, January 2014. (bib)
2013
P. Matthies, K. Sharma, A. Okur, J. Gardiazabal, J. Vogel, T. Lasser, N. Navab
First use of mini gamma cameras for intra-operative robotic SPECT reconstruction
Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Nagoya, Japan, September 2013 (bib)
P. Matthies, S. O. Cho, M. Friebe
Integration of a low energy radiation source in MRI environment for intraoperative applications - a Feasibility Evaluation
25th International Conference of the International Society for Medical Innovation and Technology, iSMIT 2013 in Baden-Baden, Germany, September 05-07, 2013 (bib)
P. Matthies, A. Okur, T. Wendler, N. Navab, M. Friebe
Combination of intra-operative freehand SPECT imaging with MR images for guidance and navigation
IEEE Engineering in Medicine and Biology (EMBC), Osaka, Japan, July 2013. (bib)
C. Bluemel, A. Schnelzer, A. Okur, A. Ehlerding, S. Paepke, K. Scheidhauer, M. Kiechle
Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer
European Journal of Nuclear Medicine and Molecular Imaging.
The original publication is available online at www.springerlink.com
(bib)
J. Vogel, T. Lasser, J. Gardiazabal, N. Navab
Trajectory optimization for intra-operative nuclear tomographic imaging
Medical Image Analysis 17(7):723-731, 2013. (bib)
A. Okur, D. I. Shakir, P. Matthies, A. Hartl, M. Essler, S. I. Ziegler, T. Lasser, N. Navab
Freehand Tomographic Nuclear Imaging Using Tracked High-Energy Gamma Probes
Bildverarbeitung für die Medizin 2013 (BVM), Heidelberg, Germany, March 2013.
The original publication is available online at www.springerlink.com
(bib)
2012
D. I. Shakir, A. Okur, A. Hartl, P. Matthies, M. Essler, S. I. Ziegler, T. Lasser, N. Navab
Towards Intra-operative PET for Head and Neck Cancer: Lymph Node Localization Using High-energy Probes
Proceedings of the 15th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Nice, France, October 2012 (bib)

Working Group

Esposito
Marco Esposito
Esteban
Javier Esteban
Frisch
Benjamin Frisch
Göbl
Rüdiger Göbl
Hennersperger
Christoph Hennersperger
Lentes
Beatrice Lentes
Matthies
Philipp Matthies
Okur Kuru
Aslı Okur Kuru
Rackerseder
Julia Rackerseder
Stauder
Ralf Roland Stauder
Virga
Salvatore Virga


Edit | Attach | Refresh | Diffs | More | Revision r1.2 - 21 Mar 2016 - 10:08 - OliverZettinig

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif