Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Prof. Dr. Nassir Navab

Nassir Navab CAMP - Computer Aided Medical Procedures & Augmented Reality

Research Interests

CAMP Publications


Prof. Gudrun Klinker, Ph.D.

Gudrun Klinker FAR - Fachgebiet Augmented Reality

Research Interests

FAR Publications

Prof. Dr. Bjoern Menze

Bjoern Menze IBBM - Image-Based Biomedical Modelling

Research Interests

  • Image-based Modeling
  • Medical Computer Vision & Machine Learning
  • Computer-Aided Diagnostics & Radiomics

Prof. Dr. Peter Struss

Peter Struss MQM - Model-Based Systems & Qualitative Reasoning

Research Interests

  • Qualitative REasoning
  • Model-based Diagnosis
  • Knowledge-based Configuration
  • Model-based Functional Safety
  • Model-based Support Systems

PD Dr. Tobias Lasser

Tobias Lasser IP - Inverse Problems in Tomography

Research Interests

  • Inverse Problems in Tomographic Reconstruction
  • X-ray Dark-field Imaging
  • Lightfield Microscopy


Senior Research Scientists

Shadi Albarqouni

Dr. Shadi Albarqouni

  • Deep Learning for Medical Applications
  • Microscopic Image Analysis
  • Computer Aided Diagnosis

Ulrich Eck

Dr. Ulrich Eck

  • Medical Augmented Reality for Surgery and Training
  • Intra-operative Navigation and Guidance
  • System Architectures for Realtime Interactive Systems
  • Haptic-Enabled Simulators

Kuangyu Shi

PD Dr. Kuangyu Shi

  • Translational molecular imaging computing
  • Deep learning for computer-aided diagnosis
  • Computational modeling of molecular imaging and tumor microenvironment

Dr. Thomas Wendler

Dr. Thomas Wendler

  • Clinical Applications
  • Nuclear Medicine
  • Brachytherapy
  • Image-Guided Interventions

Dr. Seong Tae Kim

  • Deep Learning for Computer-aided Diagnosis
  • Spatio-temporal Learning
  • Interpretable/Explainable Deep Learning

Senior Affiliate Lecturers / Research Scientists

Ahmad Ahmadi

Dr. Ahmad Ahmadi

  • Neuroimaging
  • Multi-modal Imaging (US,MRI,etc.)
  • Clinical Applications

Maximilian Baust

Dr. Maximilian Baust

  • Variational methods
  • Medical image analysis
  • Machine learning

Vasileios Belagiannis

Dr. Vasileios Belagiannis

  • Computer Vision
  • Machine Learning
  • Deep Learning

Christoph Hennersperger

Dr. Christoph Hennersperger

  • Ultrasound Imaging
  • Computer Assisted Neurosurgery
  • Cardiac Surgery and Imaging
  • Robotic Imaging

Slobodan Ilic

PD Dr. Slobodan Ilic

  • Deformable surface modeling and tracking
  • 3D reconstruction (multi-camera, stereo)
  • Real-time object detection and tracking
  • Object detection and localization in 3D data

Markus Kowarschik

PD Dr. Markus Kowarschik

  • Lecturer: Interventional Imaging
  • Research: Interventional Imaging, Tomographic Image Reconstruction

Diana Mateus

Dr. Diana Mateus

  • Machine Learning for Medical Applications
  • 3D shape acquisition, modeling and registration
  • Computer Vision

Stephan Nekolla

PD Dr. Stephan Nekolla

  • Quantitative methods in medical imaging
  • Integration of multi modality data: PET, SPECT, CT, MRI
  • Going the full distance: from imaging physics to tracking therapeutical changes

Peter Noël

Dr. Peter Noël

  • Lecturer: Medical Imaging
  • Research: Tomographic reconstruction

Marie Piraud

Dr. Marie Piraud

  • Medical data analytics and modeling
  • Stochastic modeling and Bayesian inference
  • Machine learning and quantum artificial intelligence

Arash Taki

Dr. Arash Taki

  • Lecturer: Ultrasound Imaging
  • Scientific Advisor: BMC Master of TUM in Singapore

Federico Tombari

PD Dr. Federico Tombari

  • Invariant representations for 2D, 3D and RGB-D data
  • 3D object recognition and pose estimation
  • Stereo vision and 3D reconstruction
  • Pattern matching and robust visual correspondence

Joerg Traub

Dr. Joerg Traub

  • Lecturer: Image Guided Surgery: From Bench to Bed and Back (IGSB3)
  • Invited lecture in CAMP-I: Translation research in medical technology

Wolfgang Wein

Dr. Wolfgang Wein

  • Lecturer: conebeam CT and US Imaging
  • Research: Advanced Ultrasound Imaging

Selected Video

2D-3D Registration on Angiographic Images
Video Length:
The MICCAI video of Martin Groher's paper about 2D-3D Registration on Angiographic Images

fullsize version

Hot Stuff

5 July 2019, MI 03.13.010
The Coronary Atlas
The coronary atlas is the largest collection of processed coronary angiogram images. Together with computational modelling, shape analysis and benchtop experiments these can reveal unique insights into our individual differences and why generic coronary artery disease treatment methods won’t always work. This thus not only forms a platform for optimising existing strategies but opens entire new pathways for preventive strategies through early prediction with medical biomarkers.
24 May 2019, MI 03.13.010
Invited Talk by Danielle Pace
This work addresses the need for whole heart segmentation to individually label the cardiac chambers and great vessels for patients with congenital heart disease. Our main challenges are extreme anatomical variability and very limited training data. We demonstrate an iterative segmentation method, implemented as a recurrent neural network (RNN), in which a user provides a single landmark per structure, and a segmentation is evolved over multiple steps until reaching a stopping point that can be user-defined or automatically determined. The model grows segmentations in a predictable way that is defined during training. We show that a loss function that evaluates the entire sequence of output segmentations can be optimized using training images alongside input-output pairs of partial segmentations. Our experiments demonstrate that, compared to conventional models that segment an image in one step, the iterative segmentation offers better generalization to patients with the most severe heart malformations.
17 January 2019, MI HS 2
Invited Talk by Prof. Oliver Bimber
Digital images play an essential role in our life. Advanced imaging systems, image processing methods, and visualization techniques are today fundamental to many professions. Medical imaging is certainly a good example. However, when mapping complex (possibly multidimensional) data to 2D, information is lost. What if the notion of digital images would change once and forever? What if instead of capturing, storing, processing and displaying only a single color per pixel, each pixel would consist of individual colors for each emitting direction? Digital images would no longer be two-dimensional matrices but four-dimensional ones (storing spatial information in two dimensions, and directional information in the other two dimensions). This is called a light field. I will introduce the fundamentals of light fields, explain how light fields are captured, processed, and displayed, and present several applications of light-field technology in various application domains, such as microscopy, sensors, and aerial scanning.
6 July 2018, MI 03.13.010
Invited Talk by Prof. William (Sandy) Wells
Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. [...]


6 September 2019, Brno, Czech Republic
Best Short Paper Award VCBM 2019
We are very proud to announce that our current PhD? candiate Jakob Weiss was honored with the VCBM 2019 Best Short Paper award.
28 June 2019,
NARVIS Medical Augmented Reality Research was featured in the ARD Documentary “W - Wie Wissen”
Analogue reality and digital virtuality have long since merged. Or better: They complement each other - in augmented reality. An area that is also highly interesting for medicine.
28 June 2019,
NARVIS Magic Mirror for Anatomy Teaching was featured in the BBC Arabia Documentary “BBC 4Tech”
The NARVIS Magic Mirror supports anatomy education of medical students with the help of monitor-based augmented reality. Prof. Navab explains the concept and use cases of the Magic Mirror in an episode of “BBC 4Tech”.
16 June 2019, Long Beach
Best Paper Finalist at CVPR 2019
We are happy to announce that 1 of our papers has been elected as a best paper finalist at CVPR.
7 June 2019, Hong Kong, China
CAMP Awards at IPMI 2019

Recent Publications

25 July 2019, Seoul, Korea
9 papers accepted at ICCV 2019
We are happy to announce that 8 papers of our chair will be presented at the International Conference on Computer Vision (ICCV 2019) in Seoul, Korea, October 27 - November 2, 2019.
6 July 2019, Shenzhen, China
13 papers accepted at MICCAI 2019
We are happy to announce that 13 papers of our chair will be presented at the 22nd International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI 2019) in Shenzhen, China, October 13-17, 2019.
28 February 2019, London, UK
1 paper accepted at MIDL 2019
We are happy to announce that one paper from our Chair will be presented at the International Conference on Medical Imaging with Deep Learning MIDL 2019,
which will take place in London, July 8-9, 2019.
26 February 2019, Hong Kong
2 papers accepted at IPMI 2019
We are happy to announce that two papers from our Chair will be presented at the International Conference on Information Processing in Medical Imaging, IPMI 2019,
which will take place in Hong Kong, June 2-7, 2019.
25 February 2019, Long Beach, CA, USA
5 papers accepted at CVPR 2019
We are happy to announce that five papers from our Chair will be presented at the International Conference on Computer Vision and Pattern Recognition, CVPR 2019,
which will take place in Long Beach, CA, USA on June 16-20, 2019.

Alumni News


Location Technische Universität München
Fakultät für Informatik / I16
Boltzmannstraße 3
85748 Garching bei München

Proud of our Alumni

Dr. Nicola Rieke

Dipl.-Ing. Univ. Silvan Kraft

Dr. Stefanie Demirci
Consultant at VDI VDE Innovation & Technik
New Approaches to Computer Assistance for Endovascular Abdominal Aortic Repairs
12 April 2011
-none- Yuta Itoh

Dipl.-Inf. Univ. Aslı Okur Kuru

Edit | Attach | Refresh | Diffs | More | Revision r1.192 - 11 Mar 2010 - 15:24 - MartinHorn

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif