A. Safi, M. Baust, O. Pauly, V. Castaneda, T. Lasser, D. Mateus, N. Navab, R. Hein, M. Ziai
Computer-Aided Diagnosis of Pigmented Skin Dermoscopic Images MICCAI Workshop on Medical Content-based Retrieval for Clinical Decision Support, Toronto, Canada, September 2011 (bib) |
||
Diagnosis of benign and malign skin lesions is currently mostly relying on visual assessment and frequent biopsies performed by dermatologists. As the timely and correct diagnosis of these skin lesions is one of the most important factors in the therapeutic outcome, leveraging new technologies to assist the dermatologist seems natural. In this paper we propose a machine learning approach to classify melanocytic lesions into malignant and benign from dermoscopic images. The dermoscopic image database is composed of 4240 benign lesions and 232 malignant melanoma. For segmentation we are using multiphase soft segmentation with total variation and H1 regularization. Then, each lesion is characterized by a feature vector that contains shape, color and texture information, as well as local and global parameters that try to reflect structures used in medical diagnosis. The learning and classification stage is performed using SVM with polynomial kernels. The classification delivered accuracy of 98.57% with a true positive rate of 0.991% and a false positive rate of 0.019%. | ||
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. |