Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

A. Taki, A. Roodaki, O. Pauly, S.K. Setarehdan, G. Unal, N. Navab
A new method for characterization of coronary plaque composition via IVUS images
IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2009), Boston, Massachusetts, USA, June 28 - July 1, 2009 (bib)

IVUS-derived virtual histology (VH) permits the assessment of atherosclerotic plaque morphology by using radiofrequency analysis of ultrasound signals. However, it requires the acquisition to be ECG-gated, which is a major limitation of VH. Indeed, its computation can only be performed once per cardiac cycle, which significantly decreases the longitudinal resolution of VH. To overcome this limitation, the introduction of an image-based plaque characterization is of great importance. Current IVUS image processing techniques do not allow adequate identification of the coronary artery plaques. This can be improved by defining appropriate features for the different kinds of plaques. In this paper, a novel feature extraction method based on Run-length algorithm is presented and used for improving the automated characterization of the plaques within the IVUS images. The proposed feature extraction method is applied to 200 IVUS images obtained from five patients. As a result an accuracy rate of 77% was achieved. Comparing this to the accuracy rates of 75% and 71% obtained using co-occurrence and local binary pattern methods respectively indicates the superior performance of the proposed feature extraction method.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif