PublicationDetail

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

O. Scheel, L. Schwarz, N. Navab, F. Tombari
Explicit Domain Adaptation with Loosely Coupled Samples
IEEE International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, October 2020.
(bib)

Transfer learning is an important field of machine learning in general, and particularly in the context of fully autonomous driving, which needs to be solved simultaneously for many different domains, such as changing weather conditions and country-specific driving behaviors. Traditional transfer learning methods often focus on image data and are black-box models. In this work we propose a transfer learning framework, core of which is learning an explicit mapping between domains. Due to its interpretability, this is beneficial for safety-critical applications, like autonomous driving. We show its general applicability by considering image classification problems and then move on to time-series data, particularly predicting lane changes. In our evaluation we adapt a pre-trained model to a dataset exhibiting different driving and sensory characteristics.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.



Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif