Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

W. Wein, A. Ladikos, B. Fuerst, A. Shah, K. Sharma, N. Navab
Global Registration of Ultrasound to MRI using the LC2 Metric for Enabling Neurosurgical Guidance
Proceedings of the 16th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Nagoya, Japan, September 2013 (bib)

Automatic and robust registration of pre-operative magnetic resonance imaging (MRI) and intra-operative ultrasound (US) is essential to neurosurgery. We reformulate and extend an approach which uses a Linear Correlation of Linear Combination (LC2)-based similarity metric, yielding a novel algorithm which allows for fully automatic US-MRI registration in the matter of seconds. It is invariant with respect to the unknown and locally varying relationship between US image intensities and both MRI intensity and its gradient. The overall method based on this both recovers global rigid alignment, as well as the parameters of a free-form-deformation (FFD) model. The algorithm is evaluated on 14 clinical neurosurgical cases with tumors, with an average landmark-based error of 2.52mm for the rigid transformation. In addition, we systematically study the accuracy, precision, and capture range of the algorithm, as well as its sensitivity to different choices of parameters.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif