Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

C. Cagniart, E. Boyer, S. Ilic
Probabilistic Deformable Surface Tracking From Multiple Videos
11th European Conference on Computer Vision (ECCV), Crete, Greece, September 2010. (bib)

In this paper, we address the problem of tracking the temporal evolution of arbitrary shapes observed in multi-camera setups. This is motivated by the ever growing number of applications that require consistent shape information along temporal sequences. The approach we propose considers a temporal sequence of independently reconstructed surfaces and iteratively deforms a reference mesh to fit these observations. To effectively cope with outlying and missing geometry , we introduce a novel probabilistic mesh deformation framework. Using generic local rigidity priors and accounting for the uncertainty in the data acquisition process, this framework effectively handles missing data, relatively large reconstruction artefacts and multiple objects. Extensive experiments demonstrate the effectiveness and robustness of the method on various 4D datasets.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each authors copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Edit | Attach | Refresh | Diffs | More | Revision r1.13 - 30 Jan 2019 - 15:16 - LeslieCasas

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif