ResearchIssueMedicalImage

Chair for Computer Aided Medical Procedures & Augmented Reality
Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

THIS WEBPAGE IS DEPRECATED - please visit our new website

Research Deep Learning in Medical Imaging

About

Group Coordinators

Shadi Albarqouni
Nassir Navab

Contact Person

ShadiAlbarqouni

  • Email: shadi.albarqouni[at]in.tum.de

  • Address:

Chair for Computer Aided Medical Procedures & Augmented Reality
Fakultät für Informatik
Technische Universität München
Boltzmannstr. 3
85748 Garching b. München

Open Positions

Available Student Projects


Research Partners

Industry Partners

Academia Partners


Team

Internal Members



External Members and Collaborators



Research Themes

Research Projects in Medical Imaging

Recent Publications

2020
, A. Kazi, S. Albarqouni, , P. Biberthaler, N. Navab, , D. Mateus
Precise proximal femur fracture classification for interactive training and surgical planning
Int. J. Comput. Assist. Radiol. Surg. 2020, 15(5), pp.847-857. (bib)
R.D. Soberanis-Mukul, N. Navab, S. Albarqouni
An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation
MIDL 2020 Special Issue at the Journal of Machine Learning for Biomedical Imaging (MELBA), 2020 (bib)
A. Sadafi, A. Makhro, A. Bogdanova, N. Navab, T. Peng, S. Albarqouni, C. Marr
Attention based Multiple Instance Learning for Classification of Blood Cell Disorders
International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Lima, Peru, 2020 (bib)
A. Tran , J. Weiss, S. Albarqouni, S. Faghihroohi, N. Navab
Retinal Layer Segmentation Reformulated as OCT Language Processing
Medical Image Computing and Computer Assisted Interventions (MICCAI) Lima, Peru, October 2020 (bib)
C. Baur, R. Graf, B. Wiestler, S. Albarqouni, N. Navab
SteGANomaly: Inhibiting CycleGAN? Steganography for Unsupervised Anomaly Detection in Brain MRI
Accepted to the Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Lima, Peru, October 2020 (bib)
C. Baur, B. Wiestler, S. Albarqouni, N. Navab
Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain MRI
Accepted to the Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Lima, Peru, October 2020
A pre-print version is available online at arXiv.
(bib)
M. Bui, T. Birdal, H. Deng, S. Albarqouni, L. Guibas, S. Ilic, N. Navab
6D Camera Relocalization in Ambiguous Scenes via Continuous Multimodal Inference
Proceedings of European Conference on Computer Vision, 2020, Glasgow (bib)
R.D. Soberanis-Mukul, N. Navab, S. Albarqouni
Uncertainty-based graph convolutional networks for organ segmentation refinement
Medical Imaging with Deep Learning (MIDL), 2020 (bib)
S. Ali, F. Zhou, B. Braden, A. Bailey, S. Yang, G. Cheng, P. Zhang, X. Li, M. Kayser, R.D. Soberanis-Mukul, S. Albarqouni, et al.
An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy
Scientific Reports, 2020 (bib)
Y. Yeganeh, A. Farshad, N. Navab, S. Albarqouni
Inverse Distance Aggregation for Federated Learning with Non-IID Data
MICCAI Workshops proceedings with Springer (LNCS) (bib)
2019
M. Bui, C. Baur, N. Navab, S. Ilic, S. Albarqouni
Adversarial Networks for Camera Pose Regression and Refinement
Proceedings of the International Conference on Computer Vision Workshops, 27 October - 2 November, 2019, Seoul (bib)
M. H. Sarhan, S. Albarqouni, N. Navab, A. Eslami
Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss
22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 2019 (bib)
A. Lahiani, N. Navab, S. Albarqouni, E. Klainman
Perceptual Embedding Consistency for Seamless Reconstruction of Tilewise Style Transfer
22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 2019 (bib)
A. Khakzar, S. Albarqouni, N. Navab
Learning Interpretable Features via Adversarially Robust Optimization
22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 2019 (pre-print version is available online at arXiv) (bib)
A. Kazi, S. Shekarforoush, S. Krishna, H. Burwinkel, G. Vivar, B. Wiestler, K. Kortüm, A. Ahmadi, S. Albarqouni, N. Navab
Graph convolution based attention model for personalized disease prediction
22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 2019 (bib)
S. Hariharan, N. Strobel, C. Kaethner, M. Kowarschik, S. Albarqouni, R. Fahrig, N. Navab
Learning-based X-ray Image Denoising utilizing Model-based Image Simulations
22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Shenzhen, China, 2019 (bib)
H. Burwinkel, A. Kazi, G. Vivar, S. Albarqouni, G. Zahnd, N. Navab, A. Ahmadi
Adaptive image-feature learning for disease classification using inductive graph networks
International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Shenzhen, China, 2019 (pre-print version is available online at arXiv) (bib)
A. Ayyad, N. Navab, M. Elhoseiny, S. Albarqouni
Semi-Supervised Few-Shot Learning with Local and Global Consistency
Submitted to the 36th International Conference on Machine Learning.
A pre-print version is available online at arXiv.
(bib)
C. Baur, S. Albarqouni, N. Navab
Fusing Unsupervised and Supervised Deep Learning for White Matter Lesion Segmentation
Proceedings of the 2nd International Conference on Medical Imaging with Deep Learning (MIDL), will be held from July 8th to 10th, 2019 in London, United Kingdom. (bib)
A. Kazi, S. Shekarforoush, S. Krishna, H. Burwinkel, G. Vivar, K. Kortüm, A. Ahmadi, S. Albarqouni, N. Navab
InceptionGCN : Receptive Field Aware Graph Convolutional Network for Disease Prediction (Oral)
Proceedings of International Conference on Information Processing in Medical Imaging (IPMI), Hong Kong, 2019 (bib)
A. Kazi, S. Krishna, S. Shekarforoush, K. Kortüm, S. Albarqouni, N. Navab
Self-Attention Equipped Graph Convolutions for Disease Prediction (Oral)
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy
A pre-print version is available online at arXiv.
(bib)
M. T. Shaban, C. Baur, N. Navab, S. Albarqouni
StainGAN: Stain Style Transfer for Digital Histological Images
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy
A pre-print version is available online at arXiv.
(bib)
A. Jiménez-Sánchez, A. Kazi, S. Albarqouni, C. Kirchhoff, , , D. Mateus, C. Kirchhoff
Towards an Interactive and Interpretable CAD System to Support Proximal Femur Fracture Classification
(pre-print version is available online at arXiv) (bib)
2018
A. Kazi, A. Jiménez-Sánchez, S. Albarqouni, C. Kirchhoff, , P. Biberthaler, D. Mateus, N. Navab
Weakly-Supervised Localization and Classificationof Proximal Femur Fractures
(pre-print version is available online at arXiv) (bib)
M. Degel, N. Navab, S. Albarqouni
Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound
Proceedings of 21st International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Granada, Spain, September 2018
A pre-print version is available online at arXiv.
(bib)
A. Sanchez, S. Albarqouni, D. Mateus
Capsule Networks against Medical Imaging Data Challenges
Proceedings of MICCAI Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, Granada, Spain, September 2018
A pre-print version is available online at arXiv.
(bib)
D. Stoyanov, R. Taylor, S. Balocco, R. Sznitman, A. Martel, L. Maier-Hein, L. Duong, G. Zahnd, S. Demirci, S. Albarqouni, J. Lee, S. Moriconi, V. Cheplygina, D. Mateus, E. Trucco, E. Granger, P. Jannin
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
MICCAI 2018 Workshops (bib)
M. Bui, S. Albarqouni, S. Ilic, N. Navab
Scene Coordinate and Correspondence Learning for Image-Based Localization
Proceedings of the British Machine Vision Conference, 3-6 September, 2018, Newcastle (Oral presentation) (bib)
C. Baur, B. Wiestler, S. Albarqouni, N. Navab
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
Accepted to the Proceedings of the Brain Lesion Workshop at the 21th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Granada, Spain, September 2018
A pre-print version is available online at arXiv.
(bib)
C. Baur, S. Albarqouni, N. Navab
Generating Highly Realistic Images of Skin Lesions with GANs
Accepted to the Proceedings of the ISIC Skin Image Analysis Workshop at the 21th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Granada, Spain, September 2018
A longer pre-print version is available at arXiv.
(bib)
M. Molina-Romero, PA. Gómez, S. Albarqouni, JI. Sperl, MI. Menzel, B. Menze
Deep learning with synthetic data for free water elimination in diffusion MRI
Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM), Paris, France, June 2018 (bib)
M. Bui, S. Zakharov, S. Albarqouni, S. Ilic, N. Navab
When Regression meets Manifold Learning for Object Recognition and Pose Estimation
Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 21-25 May, 2018, Brisbane, Australia (bib)
K. Breininger, S. Albarqouni, T. Kurzendorfer, M. Pfister, M. Kowarschik, A. Maier
Intraoperative Stent Segmentation in X-ray Fluoroscopy for Endovascular Aortic Repair
International Journal of Computer Assisted Radiology and Surgery (IJCARS) (bib)
C. Baur, S. Albarqouni, N. Navab
MelanoGANs: High Resolution Skin Lesion Synthesis with GANs
Submitted to the 1st International conference on Medical Imaging with Deep Learning (MIDL), Amsterdam, Netherlands, July 2018
A pre-print version is available online at arXiv.
(bib)
S. Hariharan, N. Strobel, C. Kaethner, M. Kowarschik, S. Demirci, S. Albarqouni, R. Fahrig, N. Navab
A photon recycling approach to denoising of ultra-low dose X-ray sequences
International Journal of Computer Assisted Radiology and Surgery / 9th International Conference on Information Processing in Computer-Assisted Interventions (IPCAI), Berlin, Germany, June 2018. (bib)
2017
B. Wiestler, C. Baur, P. Eichinger, , T. Zhang, V. Biberacher, C. Zimmer, , J. Kirschke, S. Albarqouni
Fully Automated Multiple Sclerosis lesion detection on multi-channel subtraction images through an integrated Computer Vision- Machine Learning pipeline
Clinical Neuroradiolgy (2017) 27:S1-S118 (bib)
A. Kazi, S. Albarqouni, A. Sanchez, C. Kirchhoff, P. Biberthaler, N. Navab, D. Mateus
Automatic Classification of Proximal Femur Fractures based on Attention Models
Proceedings of MICCAI Workshop on Machine Learning in Medical Imaging (MLMI), Quebec, Canada, September 2017 (bib)
J. Cardoso, T. Arbel, J. Lee, V. Cheplygina, S. Balocco, D. Mateus, G. Zahnd, L. Maier-Hein, S. Demirci, E. Granger, L. Duong, M. A. Carbonneau, S. Albarqouni, G. Carneiro
Intravascular imaging and computer assisted stenting, and large-scale annotation of biomedical data and expert label synthesis
MICCAI 2017 Workshops (bib)
S. Albarqouni, J. Fotouhi, N. Navab
X-ray In-Depth Decomposition: Revealing The Latent Structures
Accepted to Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Quebec, Canada, September 2017
A pre-print version is available online at arXiv.
(bib)
M. Bui, S. Albarqouni, M. Schrapp, N. Navab, S. Ilic
X-ray PoseNet?: 6 DoF? Pose Estimation for Mobile X-ray Devices
Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), Mar 24, 2017 - Mar 31, 2017, Santa Rosa, USA
The first two authors contribute equally to this paper.
(bib)
C. Baur, S. Albarqouni, N. Navab
Semi-Supervised Learning for Fully Convolutional Networks
Accepted to Proceedings of the 20th International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI), Quebec, Canada, September 2017
A pre-print version is available online at arXiv.
The first two authors contribute equally to this paper.
(bib)
2016
S. Albarqouni, S. Matl, M. Baust, N. Navab, S. Demirci
Playsourcing: A Novel Concept for Knowledge Creation in Biomedical Research
Proceedings of MICCAI Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, Athens, Greece, October 2016
The first two authors contribute equally to this paper.
(bib)
C. Baur, S. Albarqouni, S. Demirci, N. Navab, P. Fallavollita
CathNets: Detection and Single-View Depth Prediction of Catheter Electrodes
7th International Conference on Medical Imaging and Augmented Reality (MIAR), 24-26 August, 2016, Bern, Switzerland. (Best Paper Award) (bib)
S. Albarqouni, U. Konrad, L. Wang, N. Navab, S. Demirci
Single-View X-Ray Depth Recovery: Towards a Novel Concept for Image-Guided Interventions
International Journal of Computer Assisted Radiology and Surgery (IJCARS), 2016, June 2016, Volume 11, Issue 6, pp 873-880. (bib)
S. Albarqouni, C. Baur, F. Achilles, V. Belagiannis, S. Demirci, N. Navab
AggNet: Deep Learning from Crowds for Mitosis Detection in Breast Cancer Histology Images
IEEE Transactions on Medical Imaging (TMI), Special Issue on Deep Learning, vol. 35, no. 5, pp. 1313 - 1321, 2016.
The first two authors contribute equally to this paper.
(bib)
A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M. Schlitter, I. Esposito, N. Navab
Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images
IEEE Transactions on Medical Imaging (TMI), vol. 35, no. 8, pp. 1962 - 1971, 2016. (bib)


Edit | Attach | Refresh | Diffs | More | Revision r1.10 - 18 Oct 2020 - 19:49 - ShadiAlbarqouni

Lehrstuhl für Computer Aided Medical Procedures & Augmented Reality    rss.gif